EXCRETA DISPOSAL in EMERGENCIES

A service, not just an infrastructure
This manual aims to help you find your way around excreta disposal systems wherever your curiosity leads you. Next you will find the main page where you can click on any topic to go directly to the sections and sub-sections that interest you. In each section a menu on the left side lists links to the manual’s chapters. For any subchapter that contains more than one page you will find navigation arrows on the top right side of the page.

At the bottom of each page, you will find the references used and if it is available on the web a hyperlink has been added for you to reach and consult the original document. You are encouraged to click on the reference titles to open the hyperlinks and look at the documents to find further information.

Enjoy your reading

Authors: Andy Bastable & Laurence Hamai

with inputs from Raissa Azzalini, Zulfiquar Ali Haider, Frederick Komakech and other Oxfam colleagues’ resources whose products can be found in https://www.oxfamwash.org/en
Excreta disposal system

Consultation

Modalities of implementation

Assessment

Monitoring

Operation & maintenance

Adaptation for easier access

Continuity of service

Final disposal

Treatment

Desludging

Latrine superstructure

Storage / pre-treatment pit

Slab

Main page

Annexes
Process to select the most appropriate technologies

- **Step 1**: Conduct rapid needs assessment (including users’ consultation) and mapping of the settlement area. 7 key important social and physical factors in deciding which technology /design to use
- **Step 2**: Apply decision tree for sanitation design including materials available and how the latrine will be desludged to identify the most appropriate sustainable design latrine
- **Step 3**: Rapidly construct latrines then get feedback on their use and modify accordingly (Sani Tweaks approach)
- **Step 4**: Design and implement a system for keeping the latrines clean and in good repair
- **Step 5**: Design the desludging modality and whether a centralized or decentralized faecal sludge treatment plant is necessary
- **Step 6**: Consult with local authorities and utilities to determine the most appropriate treatment options and end-product market, design parameters (e.g., site location, skillset, operation and maintenance requirement)
- **Step 7**: Determine implementation modalities for the treatment facility (by contractor or not; with or without local authorities /utility) and implement the agreed treatment design
- **Step 8**: Implement a monitoring and tracking feedback from the users – Continue consultation. Improve the quality based on the feedbacks and meet users’ expectations
A complete excreta disposal system doesn’t stop at the latrine, whether communal in a camp or familial in household compound. It also includes a desludging / transportation service and an off-site treatment and final disposal site. Various technical options are available for each component of the sanitation service chain. The next page shows a table of suitable options according to the emergency phase.

If you don’t consider the other components of the excreta disposal system when you design your latrine then your sanitation service stops once the latrine pit is full.

Reference: Compendium of Sanitation Technologies in Emergencies and GWC – FSM TWIG – Terminology Factsheet
Modalities of Implementation

Adaptation for easier access

Slab Desludging

- Operation & maintenance
- Consultation

Storage / pre-treatment pit

- Technology choices
- Design spec
- Latrine superstructure

Slab

- Desludging
- Final disposal
- Continuity of service
- Operation & maintenance

Latrine superstructure

- Technology choices
- Design spec
- Final disposal

Technology Choices

Reference

"Compendium of sanitation technologies in Emergencies"
On-site toilet choice will depend on excavation, water table level and the space available.

- **Excavate?**
 - **Yes**
 - **Flood prone / water table < 1.5 m**
 - **No**
 - *Pits / subsurface structures to be built*
 - **Yes**
 - *Raised above ground structures to be built*
 - **No**
 - *Is there water or not? This will determine if the toilet is direct drop (no water) or offset (with water)*
 - **Subsurface Direct Drop Toilet**
 - **Subsurface Offset Toilet**
 - **Raised Direct Drop Toilet**
 - **Raised Offset Toilet**

- **Is the soil stable or unstable?** Is there enough space to build new pit to replace full latrine or will the pit need to be desludged? This will determine if the pit is lined (unstable soil and/or desludging operation) or unlined (stable soil and no desludging).
There isn’t a simple decision tree to select technology options for desludging and treatment. For similar settings, it’s possible to make different selections based on what services are already available and what has been pre-positioned in contingency stock. However, there are some questions that will help you decide:

Desludging service

- Is there desludging services available, mechanical or manual?
- How accessible are latrines in the target area for trucks, for smaller mechanical system?
- What is the viscosity of the sludge and what is the farthest distance and height for pumping out?
- How scattered are the target latrines and what is the average distance for transport?
- Does the desludging system available required transport capacity and / or transfer stations?

Treatment service

- What daily volume of faecal sludge is collected and needs treatment?
- What is the level of technical expertise available?
- Is there an existing treatment facility and how far from the area of intervention?
- What are the local hydrogeological conditions and contamination risks? Are there local standards that need to be adhered to? Which treatment parameters (BOD, COD, E-Coli, N, P, pH, need to be monitored and treatment standard met?
- Will construction licence and environmental survey be required?
- Is there land available for building a centralised / semi-centralised treatment plant onsite or offsite and with which surface?
- What is the topography like and where can effluent be discharged? Does this location impose additional treatment requirement for the effluent?
- Is several decentralised treatment stations more efficient than one centralised / semi-centralised treatment plant (in term of CAPEX / OPEX, speed of construction, long term sustainability or integration with local sanitation plan)?
- Is there a market for faecal sludge treatment output, i.e fuel briquette, gas, dry sludge, compost, slurry from biodigester, biomass?
Design parameters and specifications

COVERAGE:
- Sphere Standard: Maximum of 20 people per latrine. (In initial phase aim for 50 p/p/latrine) Trench latrines: maximum of 100 people per 3.5m length of trench at 1m deep and 300mm wide. Separate toilets may need to be provided for men and women – distance to be determined following consultation with women. Ensure disabled toilets and facilities for children

POSITION:
- Toilets should be no more than 50m from dwellings. Pit latrines should be a minimum of 6m from dwellings. Latrines should be at least 30m from any ground water sources. Latrines should be available in public places such as markets, health centres & food/non-food distribution points.

PIT DEPTH
- The bottom of the latrine should be at least 1.5m above the water table. In fine unsaturated soils and unconsolidated strata within 1.5m virtually all bacteria, viruses and other faecal organisms are removed. This distance will increase in large grained soils, gravels or fissured rock.

ACCUMULATION RATES (approx.)
- **Solids:** 0.5 Litres/person/day in emergencies (0.04 - 0.15m³/person/year in stable situations) **Liquid:** 0.8 Litres/person/day where water is not used for anal cleansing (approx.) If water is used for anal cleansing the design figure is 1.3 l/p/d. In the initial phase, before wash areas are constructed, people may wash in latrines in which case the figure could be 8 – 10 l/p/d

OTHER:
- Ensure locks for doors. All doors should have a functioning locking mechanism. Security lighting may also be necessary. Provide handwashing facilities and if necessary, water or other materials for anal cleansing. Special rails may also be needed to assist the disabled and elderly.

Children’s And Infant’s Excreta

Children under five often make up a significant proportion of the population in many poorer countries – up to 20% in some instances. It is therefore important that ways are also found to dispose of their excreta safely. This issue must be discussed with mothers, especially to identify whether nappies, potties or specially designed latrines will be necessary
Will users feel safe to use these structures? Ensure your consultation process include feedback from women and girls, children and people with mobility issues.
Sub Surface Direct drop toilet (Excavate)

Single pit latrine

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level / Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Response</td>
<td>Household</td>
<td>Household</td>
<td>Excreta containment, Sludge volume reduction</td>
</tr>
<tr>
<td>Recovery</td>
<td>Neighbourhood City</td>
<td>Shared</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
<th>Technical Complexity</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little</td>
<td>Low</td>
<td>Excreta, Excreta Blackwater, (+ Dry Cleansing Materials), (+ Ano Cleansing Water)</td>
<td>Sludge</td>
</tr>
</tbody>
</table>

Single ventilated improved pit (VIP)

Fossa alterna

- Slab raised to stop water from entering the pit
- Support ring

Twin Pits Dry System

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level / Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Response</td>
<td>Household</td>
<td>Household</td>
<td>Excreta containment, Sludge volume reduction, Reduction of odour and flies</td>
</tr>
<tr>
<td>Stabilisation</td>
<td>Neighbourhood City</td>
<td>Shared</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
<th>Technical Complexity</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Low</td>
<td>Excreta, Excreta Blackwater, Organic, (+ Ano Cleansing Water), (+ Drying Material)</td>
<td>Pit Humus</td>
</tr>
</tbody>
</table>

Annexes

- Single pit latrine
- Single ventilated improved pit (VIP)
- Twin Pits Dry System
- Fossa alterna
- Double VIP

Reference:

- Compendium of Sanitation Technologies in Emergencies
Sub Surface offset toilet (Excavate + Water)

Twin Pits for Pour Flush

Worm-Based Toilet (Emerging Technology)

Reference: Compendium of Sanitation Technologies in Emergencies
Sub Surface offset toilet (Excavate + Water)

Effluent still contain contaminants and needs to be discharged either through a sewer or through a percolation field. How much space is available, and would user want to reuse effluent for irrigation? (meaning an additional step for effluent treatment will be required to reduce contamination risks or discouraging the idea)?

Reference: Compendium of Sanitation Technologies in Emergencies
Raised direct drop toilet

Reference: Compendium of Sanitation Technologies in Emergencies
Raised direct drop toilet

Chemical Toilet

Container-Based Toilet

Appropriate in places where there is little space, or where people are mostly renting their accommodation.

Consult with users to ensure there is an appropriate system to collect, transport and safely disposed of bag (or clean containers).

Reference: Compendium of Sanitation Technologies in Emergencies
Raised offset toilet (Water)

- **Modalities of implementation**
- **Adaptation for easier access**
- **Slab**
- **Desludging**
- **Final disposal**
- **Operation & maintenance**

Excreta disposal system

Technology choices

- Decision tree
- Design spec
- Latrine choices
- Transport choices
- Treatment choices

Assessment

- Consultation
- Monitoring
- Modalities of implementation
- Adaptation for easier access
- Latrine superstructure

Slab

- Storage / pre-treatment pit

- **Desludging**

- **Final disposal**

- **Continuity of service**

- **Operation & maintenance**

Annexes

- Raised
- Pour Flush

Worm-Based Toilet

- Raised
- Offset

Biofil Toilet

- **It is both a containment and a treatment technology.** The system is composed of a pour flush interface, followed by a composting part where solids and liquid are separated. **Microorganisms degrade matter through aerobic decomposition in enclosed container** (Biofilcom, 2017)

- **Worm-Based Toilet Technology choices**

- **Decision tree**
- **Transport choices**
- **Design spec**
- **Latrine choices**

- **Treatment choices**

- **Monitoring**

- **Continuity of service**

- **Operation & maintenance**

- **Annexes**

Excreta disposal system

- **Treatment choices**

- **Continuity of service**

- **Operation & maintenance**

- **Annexes**
Transport choices

Manual emptying and transport

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level / Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Household</td>
<td>Household</td>
<td>Empowering and transporting where access is all levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
<th>Technical Complexity</th>
<th>Inputs / Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra</td>
<td>Low</td>
<td>Sledge, Backwater, Effluent, UTI, Stored UTI</td>
</tr>
</tbody>
</table>

![Diagram of manual emptying and transport]

Motorised emptying and transport

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level / Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Household</td>
<td>Household</td>
<td>Empowering and transporting, Efficiency of emptying</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
<th>Technical Complexity</th>
<th>Inputs / Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Medium</td>
<td>Sledge, Backwater, Effluent, UTI, Stored UTI</td>
</tr>
</tbody>
</table>

![Diagram of motorised emptying and transport]

Reference: [Compendium of Sanitation Technologies in Emergencies](http://example.com)
Mobilisation and promotion is required to minimise pipe blockage and facilitate proper maintenance. Prior consultation will be used to determine an appropriate O&M mechanism.

Reference: Compendium of Sanitation Technologies in Emergencies
A treatment plant is constituted of different treatment steps, each with various choices.

Pre-treatment
- **Blackwater**
- **Greywater**
- **Faecal sludge**

Physical Treatment

Wastewater and faecal sludge generated by medical centres and factories may contain metallic and other pollutant requiring specific treatment whose end products may not be eligible for reuse.

Primary treatment
- Physical Treatment

Secondary treatment
- **Anaerobic Treatment**
- **Aerobic treatment (may require compressor to inject air / oxygen)**
- **Chemical or physical Treatment**
- **Mixed aerobic and anaerobic treatment**

Effluent

Tertiary treatment
- **Dry sludge**
- **Biomass**
- **Biogas**
- **Compost**
- **Fuel briquette manufacturing**
- **Co-composting**

- **Post treatment**
- **Producing swimming water quality effluent**

Sludge

- **Eliminate grit and solid waste to protect equipment (pump, pipe) and ensure the quality of end product**
- **Dewatering and concentration of sludge to reduce the size of the secondary treatment infrastructure**
- **Organic matter (BOD, TDS, TSS) and nutrient reduction and / or transformation, pathogen removal are various objectives achieved by the different treatment structures**
- **This stage depend on environment sensitivity, local regulations and standards, for reuse and / or disposal compared to the quality of output from the secondary treatment**

Initial consultation with users is required to ensure the quality and reuse of treatment outputs fit into the local circular economy and match population needs.
Reference: Compendium of Sanitation Technologies in Emergencies
Reference: Compendium of Sanitation Technologies in Emergencies
Modalities of implementation

Adaptation for easier access

Slab Desludging

Final disposal

Operation & maintenance

Latrine superstructure

Storage / pre-treatment pit

Desludging

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes

Excreta disposal system

Technology choices

Decision tree

Design spec

Latrine choices

Transport choices

Treatment choices

Assessment

Consultation

Monitoring

Modalities of implementation

Adaptation for easier access

Latrine superstructure

Slab

Storage / pre-treatment pit

Desludging

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes

Reference: Compendium of Sanitation Technologies in Emergencies

Aerobic treatment process

Activated Sludge

Need pre- and primary treatment to operate correctly

Trickling Filter

Mostly aerobic reactions with pockets of anaerobic conditions

Phase of Emergency

Application Level / Scale

Management Level

Objectives / Key Features

Phase of Emergency

Application Level / Scale

Management Level

Objectives / Key Features

Space Required

Technical Complexity

Inputs

Outputs

Space Required

Technical Complexity

Inputs

Outputs

Activated Sludge

Need pre- and primary treatment to operate correctly

Trickling Filter

Mostly aerobic reactions with pockets of anaerobic conditions

Reference: Compendium of Sanitation Technologies in Emergencies
Modalities of implementation
Adaptation for easier access
Slab Desludging Final disposal
Operation & maintenance

Latrine superstructure
Storage / pre-treatment pit
Desludging
Treatment
Final disposal
Continuity of service
Operation & maintenance
Annexes

Excreta disposal system
Technology choices
Decision tree
Design spec
Latrine choices
Transport choices
Treatment choices

Assessment
Consultation
Monitoring
Modalties of implementation
Adaptation for easier access
Latrine superstructure
Slab
Storage / pre-treatment pit
Desludging
Treatment
Final disposal
Continuity of service
Operation & maintenance
Annexes

Reference: Compendium of Sanitation Technologies in Emergencies
Local taboo in handling sanitation by-product from faecal sludge may apply to the resulting compost. Consult with users to identify such issues.

Reference: Compendium of Sanitation Technologies in Emergencies
Unplanted Drying Beds

Dry sludge and leachate need further treatment (e.g. respectively co-composting and waste stabilisation pond).

Plan several beds to alternate and maintain operation.

Plan several beds to alternate and maintain operation.

Leachate needs further treatment (e.g. horizontal flow constructed wetland). Sludge may require pre-treatment.

Aerobic treatment process

Reference: Compendium of Sanitation Technologies in Emergencies

Aerobic treatment process

Decision tree

Latrine choices

Transport choices

Technology choices

Assessment

Consultation

Monitoring

Modalities of implementation

Adaptation for easier access

Latrine superstructure

Slab

Storage / pre-treatment pit

Desludging

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes

Phase of Emergency

- Acute Response
 - Stabilisation
 - Recovery

- Household
 - Neighbourhood
 - City

Application Level / Scale

- Household
 - Shared
 - Public

Management Level, Objective / Key Features

- Sludge-drying, Sludge-volume reduction

Space Required

- High

Technical Complexity

- Medium

Inputs

- Sludge

Outputs

- Sludge, Effluent

Phase of Emergency

- Acute Response
 - Stabilisation
 - Recovery

- Household
 - Neighbourhood
 - City

Management Level, Objective / Key Features

- Sludge-drying, Sludge-volume reduction

Space Required

- High

Technical Complexity

- Medium

Inputs

- Sludge

Outputs

- Sludge, Effluent, Biomass

Dry sludge needs removal every 10-15 days

Dry sludge need removal every 3-5 years

Sludge applied every 3-7 days

Leachate needs further treatment (e.g. horizontal flow constructed wetland). Sludge may require pre-treatment.

Aerobic treatment process

Reference: Compendium of Sanitation Technologies in Emergencies
Effluent and digestate (produced daily) may require further treatment if reuse in agriculture or if aquifer contamination risks are high.

Hydraulic retention time will depend on temperature and pathogenic risk of sludge and varies from 15 to 60 days.

Reference: Compendium of Sanitation Technologies in Emergencies
Excreta disposal system

Technology choices
- Decision tree
- Design spec
- Latrine choices
- Transport choices

Treatment choices
- Assessment
- Consultation
- Monitoring
- Modalities of implementation
- Adaptation for easier access
- Slab
- Storage / pre-treatment pit
- Desludging
- Treatment
- Final disposal
- Continuity of service
- Operation & maintenance
- Annexes

Treatment of effluent and wastewater

Waste Stabilisation Ponds

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level/ Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Response</td>
<td>Household</td>
<td>Household</td>
<td>Solid & liquid separation, Pathogen reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shared</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent, Sludge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
</tr>
</tbody>
</table>

Mixed Aerobic and anaerobic treatment process

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level/ Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Response</td>
<td>Household</td>
<td>Household</td>
<td>Solid & liquid separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shared</td>
<td>Pathogen reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent, Sludge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

Constructed Wetland

Phase of Emergency
- Acute Response
- Stabilisation
- Recovery

Application Level/ Scale
- Household
- Neighbourhood
- City

Management Level
- Household
- Shared
- Public

Objectives / Key Features
- TSS and TDS reduction
- Nitrification

<table>
<thead>
<tr>
<th>Phase of Emergency</th>
<th>Application Level/ Scale</th>
<th>Management Level</th>
<th>Objectives / Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Household</td>
<td>Household</td>
<td>TSS and TDS reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shared</td>
<td>Nitrification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public</td>
<td></td>
</tr>
</tbody>
</table>

Inputs
- Effluent

Outputs
- Effluent, Biomass

Technical Complexity
- High

Diagrams

- Horizontal subsurface flow constructed wetland
- Vertical flow constructed wetland

Reference: [Compendium of Sanitation Technologies in Emergencies](#)
7 rapid questions before starting latrine building

These questions need answers even in a rapid onset emergency

1. What are local practices?
 a. How did people dispose of excreta before the crisis,
 b. What are they doing now & what would they find acceptable now,
 c. Is water available e.g. pour flush versus direct drop,
 d. Religious/cultural habits,
 e. Sharing preferences,
 f. And anal cleansing practice?

2. Location; which locations are possible given soil and topography and what is socially acceptable?

3. Can you excavate? The importance of soil type – rocky, very hard, very soft sand to be determine.

4. What is the space available? Are the affected population densely packed or spread out? E.g., design for desludging or re-digging pits. Where would desludged material go?

5. What is the ground permeability? Infiltration capacity of the soil to determine ground conditions.

6. Where is the water table level? I.e., groundwater considerations regarding contamination and whether underground structures might flood during seasonal fluctuations.

7. What is present capacity? Are there current facilities, sewage system that can be repaired or connected too?

Mapping of the settlement area for latrine construction

Mapping of the nature of the settlement area in view of the suitability for construction of specific type of latrine is an important step towards making the right decision for latrine design options.

In formal settlements such as refugee camps, with designated locations for latrines, mapping should focus on flooding during the rainy season, the groundwater level in dry and rainy seasons, whether the soil can be excavated (e.g. whether subsurface conditions are rocky) and whether the subsoil is collapsible when wet.

The findings of the mapping will inform which kinds of latrine technology will be appropriate in the settlement (or in parts of the settlement). This will provide important information in planning and the O&M aspects of the sanitation program.
If latrines aren’t used, money, time and resources are wasted and we are failing in our responsibility to the communities we work with.

“I feel happy using a latrine when I can lock the door so nobody can get in. I need a clear pathway and lighting along the way. It’s also important to me that it’s clean and free from vermin.”
Recent research from humanitarian responses shows that on average **40% of women** are not using the latrines provided. The main reasons stated are:

- Not wanting to be seen going to the toilet
- Lack of privacy (fear of people peeping in)
- Latrines in inappropriate locations
- Fear of sexual harassment
- Fear of vermin
- Lack of proper, durable locks on doors
- Lack of lighting at night
- Lack of cleanliness

People with mobility issues may face difficulty using a toilet.

Not only young children can be afraid to use a toilet. Even a 6-year old child can fall through a **25cm diameter** latrine hole.
Community Engagement

Community engagement in WASH is a planned and dynamic process to connect communities and other emergency response stakeholders to increase community’s control over the impact of the response. It brings together the capacities and perspectives of communities and responders.

Community Engagement in WASH video

Reference: Oxfam – An introduction to Community Engagement in WASH
Tools like Sani Tweak and the Community Perception Tracker (CPT) will help better engage communities in the process of designing, building and maintaining an excreta disposal service.

WASH Engineers should consider Community Engagement as a high return investment to ensure the success of their project.

Each step in which WASH Engineers participate will facilitate the design, implementation, and operation & maintenance of an appropriate excreta disposal service.

Reference: Oxfam – An introduction to Community Engagement in WASH
Community engagement enables people to have a say in decision making wherever possible.

Different levels of engagement may be practical or appropriate at different stages in the response – or they may happen simultaneously.

Ask yourself: Where is my programme in this continuous process ... and can we hand over more control to communities?

The context also play its part: what is possible in a conflict situation may be different from opportunities in a protracted crisis or natural disaster.
As part of the community engagement process, hygiene promoters will go through a 5 step process for designing activities to change behaviour and practices regarding public health risks, including excreta disposal and handwashing with soap.

WASH engineers need to pay attention to two of these steps as they can influence and improve the design of an excreta disposal system:

STEP 3
DETERMINE THE BARRIERS AS WELL AS THE ENABLERS AND MOTIVATORS

Using this information, find out what stops people from adopting positive behaviours or practices, and how they can be motivated and supported to make positive changes.

STEP 4
DESIGN ACTIVITIES AIMED AT CHANGING BEHAVIOURS AND PRACTICES

Design and implement appropriate and specific activities based on this analysis of barriers and enablers. Activities should aim to enable and motivate change or minimize obstacles to positive behaviour and practice.

Understanding taboo in handling faecal sludge treatment by-products will influence both treatment design and operation and maintenance systems.

Improving agriculture or energy production as a by-product of faecal sludge treatment could be a motivator for both latrine uptake and long-term sustainability of the excreta disposal system.

Design options for the excreta disposal system will influence any plan and activity to change behaviour and practices.
The goal

Sani Tweaks’ aim is to ensure that, **before the superstructure is designed**, even in rapid onset emergencies, appropriate consultation with potential users happens.
Sani Tweaks – What does it mean?

Consult

Before starting a latrine building programme, consult the users: what are their practices, preferences, minimum distance between men's and women's toilets, vulnerable people's needs, children and babies' needs, menstrual hygiene management needs, siting constraints.

Modify

Change both the design of the latrine, and the sanitation programme, and keep changing it as the programme continues. Consider lighting, door locks, accessibility, privacy, wall height, wall material, doors, male/female segregation, screens, adaptations for the disabled and elderly, child-specific latrines, sanitary pad reuse/drying or disposal facilities, handwashing facilities and handwashing motivators.

Consult again

Have a system in place for gathering feedback whilst the latrine is in use, and for ongoing repairs - particularly if the latrine is made of plastic sheeting. How will the latrines be kept clean, and how will they be desludged or replaced?
See Sani Tweak video
Sani Tweaks Resources

The following resources provide guidance, in a variety of formats to suit different needs, on how to conduct such continuous consultation with the community:

Find out more at https://www.oxfamwash.org/sanitweaks
The CPT is an approach that uses a mobile tool to enable staff to capture, analyse and understand the perceptions of communities during disease outbreaks. Correlated with epidemiological data, it is used to inform and adjust programming, and provide an evidence base for advocacy and influencing.

The CPT is a vital part of Oxfam’s Community Engagement approach.

Find out more at: https://www.oxfamwash.org/en/communities/community-perception-tracker
How is the CPT relevant to the work of engineers?

The CPT can give information on the context, some of which may be useful for adapting design, operation and maintenance approaches.

If the CPT is in place in your country of operation, contact the team in charge to use it and to get information in order to attune to communities.

When participating in the CPT, you learn to listen completely to community members without the boundary of your program.

The CPT is like a temperature check. It gives you a sense of perception trends within the communities.

The CPT provides insight on what is a priority for communities.

From the trends analysis, you can identify what questions need further in-depth research (through focus group discussion for example).

The CPT provides only qualitative insight.
Monitoring

Monitoring is the systematic and continuous process of collecting and using information throughout the programme cycle for the purpose of management and decision-making. WASH programmes should include:

• Process monitoring that looks at how the project is being developed.
• Impact monitoring that looks at whether the project is having the intended impact.

MEAL responsibility with WASH team inputs

WASH team responsibility
Process monitoring (continuous process - checklist)

To verify design specifications are respected and are maintained as long as the service is needed

Functional latrine

- Check water doesn’t stay on the roof
- Check the walls are not see-through
- Check water falling from the roof is drained out and doesn’t dig under the slab
- Check the slab and latrine are not collapsing or at risk to collapse
- Check inside the slab is clean
- Check the inside lock always function
- Check the pit is not full
- 50cm mark visible, the pit is overfilled
- 1m mark visible, plan for desludging or digging a new pit as replacement

Stick with 50cm and 1m marks, lower to the top of the faeces in the pit

- Check there is a functioning handwashing station
- Check the pit is not full

To verify design specifications are respected and are maintained as long as the service is needed.
There are two possible camp layouts styles.

Their respective advantage are:
- Corridor layout has less scattered facilities
- 16-family community has shorter distance to sanitation facilities for all users

Sufficient functional facilities for all users

The ratio of people per latrine should only take into account **functional latrines**

Numbering each facility with a post code type for user to report issues help monitoring and service continuity

Check adapted latrine availability for people with reduced mobility

Check distance to facilities
Safe evacuation of faecal sludge

Check road security rules and application

Check there isn’t any spillage

Check the destination is only an approved site

Check the faecal sludge doesn’t contain items (e.g. solid waste) that present risk to desludging and to treatment

Check the treatment outputs are used according to National Standards and international recommendations

Check final disposal site are protected against flood and rain runoff

Check if operators and stakeholders are satisfied with treatment processes and infrastructures

Check the treatment eliminate disease risks (e.g. cholera vibrio, parasites)

Check surrounding aquifers are not contaminated by treatment and disposal sites (monitor bacteriological, helminths eggs and nitrate concentration)

Reference: Feecal sludge management – Systems approach for Implementation and Operation
Impact monitoring (punctual process at key time of the implementation – FGD / survey)

- Are everyone only using toilet (or commode / potty) to defecate?
- Is everyone washing their hands after defecation?
- Are water sources protected from faeces contamination?
- Is the level of cost recovery sufficient to sustain the operation and maintenance of the excreta disposal system?
- Are diarrhoeal diseases morbidity reduced?
Indicators

WASH outcomes
- There is no evidence of WASH-related disease outbreaks
- Access to appropriate sanitation facilities and resources is available to all, in line with Sphere standards
- Sanitation facilities are consistently used and users are involved in maintaining them
- There is no evidence of open defecation
- Hand washing is effectively practised

Community participation
- Formal and informal community leaders, community organizations and institutions are identified
- A stakeholder map developed with communities is used to analyse power dynamics and for programme planning
- A diverse range of people selected by the community is involved in decisions on the planning, design and maintenance of sanitation infrastructure and services
- Communities, including more marginalized groups, influence the design of feedback and complaints mechanisms
- Diverse community members are included in identifying local priorities, problems and their own solutions
 - Implementation plan with roles and responsibilities of all actors is agreed and monitored
 - Community members are involved in monitoring programme activities and in the feedback loop to their wider community
 - Communities are supported to advocate on their behalf to Oxfam and to other stakeholders through coordination platforms
 - Capacity development and a timely exit/transition plan is agreed by communities and other key stakeholders

Community satisfaction
- Communities report that key information is clearly communicated in appropriate languages and reaches all sections of the community using context-specific channels
- Communities report that specific gendered needs of women and men, boys and girls are taken in to account in the design and location of the facilities (access, privacy, safety, menstrual hygiene management-friendly)
- Marginalized groups and individuals express satisfaction with consultation and programme adaptations
- Communities report that they have the skills and support to manage WASH facilities and services
<table>
<thead>
<tr>
<th>Code</th>
<th>Sub-domain</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP-1</td>
<td>Feedback mechanism</td>
<td>Number of feedback received (including complaints) which have been acted upon</td>
</tr>
<tr>
<td>AAP-3</td>
<td>Participation</td>
<td>Number of persons consulted (disaggregated by sex/age) before designing a program/project [alternatively: while implementing the program/project]</td>
</tr>
<tr>
<td>W 7-1</td>
<td>W7 Aggravating Factors</td>
<td>Presence of faecal-oral diseases</td>
</tr>
<tr>
<td>W 7-4</td>
<td>W7 Aggravating Factors</td>
<td>Density of settlement in m² of total site area per person</td>
</tr>
<tr>
<td>W 7-5</td>
<td>W7 Aggravating Factors</td>
<td>Nb of people on the site</td>
</tr>
<tr>
<td>W1-8</td>
<td>W1.2 Hygiene Practices</td>
<td>Proportion of men, women, boys and girls who last defecated in a toilet (or whose faeces was last disposed of in a safe manner)</td>
</tr>
<tr>
<td>W1-9</td>
<td>W1.2 Hygiene Practices</td>
<td>Proportion of men, women, boys and girls washing hands with water and soap or substitute after contact with faeces and before contact with food and water</td>
</tr>
<tr>
<td>W3-1</td>
<td>W3.1 Environment</td>
<td>Presence of human faeces on the ground on and around the site</td>
</tr>
<tr>
<td>W3-2</td>
<td>W3.2 Toilet Facilities</td>
<td>Average number of users per functioning toilet</td>
</tr>
<tr>
<td>W3-3</td>
<td>W3.2 Toilet Facilities</td>
<td>Proportion of households with access to a functioning toilet</td>
</tr>
<tr>
<td>W3-4</td>
<td>W3.2 Toilet Facilities</td>
<td>Proportion of toilets with functioning and convenient handwashing facilities</td>
</tr>
<tr>
<td>W3-5</td>
<td>W3.2 Toilet Facilities</td>
<td>Proportion of toilets that are clean</td>
</tr>
<tr>
<td>W8-1</td>
<td>W8 WASH Programme Design and Implementation</td>
<td>All groups within the affected population have equitable access to WASH facilities and services</td>
</tr>
<tr>
<td>W8-2</td>
<td>W8 WASH Programme Design and Implementation</td>
<td>The WASH response includes effective mechanisms for representative and participatory input from all users at all phases</td>
</tr>
<tr>
<td>W8-3</td>
<td>W8 WASH Programme Design and Implementation</td>
<td>The affected population takes responsibility for the management and maintenance of facilities as appropriate, and all groups contribute equitably</td>
</tr>
</tbody>
</table>
THE ACCOUNTABILITY & QUALITY ASSURANCE INITIATIVE

VANITY vs ACTIONABLE METRICS

<table>
<thead>
<tr>
<th>VANITY METRICS:</th>
<th>ACTIONABLE METRICS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headline numbers that focus on activities completed, but do not capture information that indicates where we need to improve.</td>
<td>Information that can be used to understand whether activities are working and leads to specific improvements.</td>
</tr>
</tbody>
</table>

Examples:
- Number of latrines built
- % of people using latrines

The AQA approach

Collectively DEFINE standards, objectives and approaches.
The modular analytical framework is used to set Key Quality Indicators (KQIs) and benchmarks appropriate to the context. The timing, approach and roles for data collection, reporting and analysis are defined.

MEASURE against these indicators using available data. KQIs are continuously monitored. Data is regularly reported to the coordination platform for collation and production of the quality snapshot.

The DEFINE and LEARN phases occur as part of the Humanitarian Programme Cycle. MEASURING and ADAPTING is a continuous process.

Trends, monitoring data and action plans are periodically reviewed and LESSONS LEARNED are documented. Definition documents are revised to ensure they are appropriate to the context and response objectives.

WASH partners jointly analyse the information in the quality snapshot, develop action plans based on the quality gaps identified and ADAPT programmes to mitigate risks and continuously improve.
Example of contextualised module

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>KEY QUALITY INDICATOR</th>
<th>BENCHMARKS</th>
<th>MONITORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCRETA DISPOSAL SPHERE 2018</td>
<td>Water supply standard 2.2: Water quality</td>
<td>% of affected population disposing of their faeces safely every time they defecate</td>
<td>Safe disposal: Household latrines located on premises: Latrine passes functionality checklist</td>
</tr>
<tr>
<td>HAND-WASHING SPHERE 2018</td>
<td>Hygiene promotion standard 1.1: Hygiene promotion</td>
<td>% of affected population washing their hands with soap at key times</td>
<td>Soap: Solid, liquid soap or ash</td>
</tr>
</tbody>
</table>

Excreta disposal service is required from day one of an emergency onset. The modality of implementation needs to be adapted to the targeted population and to the phase of the emergency.

<table>
<thead>
<tr>
<th>1st phase / onset emergency</th>
<th>2nd phase / stabilisation period</th>
<th>Recovery / exit phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open defecation management</td>
<td>Family shared toilet</td>
<td>CLTS</td>
</tr>
<tr>
<td>Trench latrine</td>
<td>Household toilet</td>
<td>Sanitation marketing</td>
</tr>
<tr>
<td>Communal latrine</td>
<td>Inclusion of marginalised</td>
<td></td>
</tr>
<tr>
<td>Distribution of commode</td>
<td>population</td>
<td></td>
</tr>
<tr>
<td>and potty (children and</td>
<td>Sustainable system / waste to</td>
<td></td>
</tr>
<tr>
<td>people with disabilities</td>
<td>value</td>
<td></td>
</tr>
</tbody>
</table>

Consultation / community engagement

- Consultation / community engagement
- Assessment
- Monitoring
- Final disposal
- Continuity of service
- Operation & maintenance
- Annexes
- Construction mode
- Public toilet
- Family shared toilet
- Household toilet
- Adaptation for easier access
- Latrine superstructure
- Slab
- Storage / pre-treatment pit
- Desludging
- Treatment
- CLTS
- Sanitation marketing
There are a number of ways of constructing sanitation facilities:

1. The entire latrine can be constructed by the agency
2. The beneficiaries can dig their own pit & the agency provides the slabs, superstructure and technical assistance.
3. The beneficiaries are mobilised to construct their own latrines using locally available materials. The agency may need to provide tools and technical assistance or vouchers (conditional cash)
4. Using contractors & ensuring good monitoring and sign off by the agency

In cases of large-scale emergencies when agencies have to directly install a huge number of lifesaving sanitation facilities in a short period of time, contracting out the construction work to multiple contractors is a key implementation modality. Awarding the whole work to one contractor selected via competitive bid just simply to follow the procurement rules involves accepting risks that could complicate the implementation process. Instead, distributing the work to multiple contractors will help speed up implementation and avoid risk of delay and failure in terms of quality. This requires the WASH and Logistics managers to work together.

Contracted works is a collaboration between Logistic, Finance and WASH teams and need to be well coordinated. More information can be found by Oxfam staff on the compass page [One Oxfam Supply & Logistics Toolkit](https://oxfam.org.uk/) **. Other organisations’ staff should check their organisation procedures.**

For contracting works, refer to [Oxfam Technical Brief TBN12 — Introduction to contracting out PH engineering works and contract management](https://oxfam.org.uk/) **and to your logistic department**
Whenever there is more than 20 people per latrine door (e.g. Sphere standard for 1st phase emergency 50 people per door)

Deep Trench latrine

In the preparation phase there should be as much co-ordination as possible with the affected population concerning the siting and type of latrines. Site maps should be drawn up to aid the equal distribution of communal latrines and to plan where latrine corridors can be put. A map can be drawn up with community members to involve them in this process of siting the latrines. If a community map is used it is very important to conduct this exercise with men and women and also with a technical advisor present to ensure that a consensus is reached on this important point.

Due to management and maintenance problems associated with communal facilities, communal latrines are normally seen as only a short-term measure, before family latrines can be built or only for public places such as near markets, food and health centres. It may be necessary to pay workers (per latrine completed) in the initial phase for construction of communal latrines. However, it is preferable, in order to promote ownership, care and maintenance, if community members can be motivated to build them. If community members are to build their own toilets, then it may be necessary to provide help to those who may have no one available to do this such as female headed households, disabled families and the elderly.

It may not always be necessary to construct communal latrines as the population may be rapidly mobilised to dig their own family latrines, which are always preferable if conditions allow.

In planning budgets, consider if the initial communal latrines can be reused during the transition to family shared / household toilet and include the necessary budget for their adaptation based on consultation with users.
Family shared Toilet

Maximum 20 users per latrine door, dedicated to few families (~4) and the means to lock the door

All different modalities of construction can apply, although user participation in the construction improves user ownership of toilets

Single door structures if space allows, or double door structures
Supporting families to build their own toilet through subsidies

Targeting for:
- Fully subsidised toilet
- Partially subsidised
- No subsidy

Must be discussed and agreed on with communities

Materials

Tools

Technical manpower

Main page
Excreta disposal system
Assessment
Consultation
Monitoring
Modalities of implementation

Construction mode
Public toilet
Family shared toilet
Household toilet

Adaptation for easier access

Latrine superstructure

Slab

Storage / pre-treatment pit

Desludging

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes
Motivating families to construct their own toilets through participatory approaches, e.g. CLTS

CLTS concentrates on the whole community rather than on individual behaviours

The facilitation phase involves a community engagement process where WASH engineers listen to users and understand enablers and barriers

Pre-Triggering: ensuring conditions are favourable for the CLTS approach

Technical support for appropriate latrine design in difficult ground condition

Post-Triggering: Celebrating achieving ODF (Open Defecation Free) status

Reference: Plan - Handbook of Community-led Total Sanitation
Supporting families to build their own toilet through **Market-based programming**

Based on Oxfam Philippines’ program to make toilet affordable

- Getting government buy in to use existing social support mechanisms to increase toilet ownership and use
- Designing new, more affordable and more desirable products to suit a range of customers
- Reducing cost through bulk buying materials, developing local supply routes and using sales agent
- Understanding the type of toilets people want to use and maintain
- Making it easy to save for a toilet or take out an affordable loan
- Showing people that owning a toilet could become a reality through affordable loan and savings

Modalities of implementation

Adaptation for easier access

- Latrine superstructure
- Slab
- Storage / pre-treatment pit
- Desludging
- Treatment
- Final disposal
- Continuity of service
- Operation & maintenance

Consultation

Excreta disposal system

Assessment

Monitoring

Construction mode

- Public toilet
- Family shared toilet
- Household toilet

Annexes
In which situation should you consider market-based or cash-based programming?

In affected communities and communities hosting IDPs / Refugees

Supporting communities and artisans / enterprise in designing appropriate sanitation infrastructure

There are artisans and small business which can easily deliver any part of the excreta disposal system (e.g., material production, construction of facilities, desludging) through capacity building or financial support

People have an income and access to market

People have access to credit or savings groups

Conditional cash grant for toilet (through vouchers) to households building their own toilet or for vulnerable families (either in host communities or camps)

In refugee camps, people rarely have access to income

The market need to be monitored to avoid prices inflation or any other negative impact resulting from the intervention and / or from other reasons that can be beyond the control of the program

In designing think in capital investment and operational cost. The latter should be as low as possible for long term sustainability

To support loan request, think in term of return in investment (income) but also prevention in future cost / expense (reduction on health expense, less water treatment cost, reduced disaster impact, reduced water stress, etc.)

Identifying micro-finance institutions and supporting access to credit

Hiring the service of local enterprise for the upgrade or construction of latrine for IDPs / refugees families and their host

Annexes

Excreta disposal system
Assessment
Consultation
Monitoring
Modalities of implementation
Construction mode
Public toilet
Family shared toilet
Household toilet

Adaptation for easier access
Latrine superstructure
Slab
Storage / pre-treatment pit
Desludging
Treatment
Final disposal
Continuity of service
Operation & maintenance
Annexes
There is no one-size-fits-all solution that can be picked up and apply to make WASH work inclusive; a range of different things need to be done, adapted to the specific context. It’s not a linear process either; some activities can be carried out at various times in the programme cycle, and some can be run in parallel. An activity may result in unexpected outcomes, requiring you to respond in ways you had not originally anticipated, adapting your approach. Focusing on the principles of the rights to sanitation will help guide your journey towards equality, non-discrimination and inclusion in WASH.

‘The human right to sanitation entitles everyone without discrimination to physical and affordable access to sanitation, in all spheres of life, which is safe, hygienic, secure, socially and culturally acceptable, which provides for privacy and ensures dignity.’

United Nations General Assembly / Human Rights Council

Reference: WaterAid (2018) - Understanding and addressing equality, non-discrimination and inclusion in water, sanitation and hygiene (WASH) work. Water Aid: London, UK
Sanitation facilities are only effective if they are used, and they will only be used if the experience of using them is acceptable. This means users must feel safe and be able to see what they are doing inside the toilet. Whilst lighting may initially be viewed as a costly extra, especially in addition to the cost of a basic superstructure, its benefits justify the investment. Planning lighting in advance helps ensure that it is both efficient, effective and contributes towards greater safety, especially for women and children.

Lighting

- **Natural Light Inside the Toilet**
 - Painting walls, door, floor in light color to reflect light
 - Window at the top of the wall or space between top of the wall and roof
 - Window on the roof or using material allowing light through (e.g. clear plastic sheeting)

- **Artificial Lighting Inside the Toilet**
 - Torches and lamp
 - Fixed lighting

- **Lighting the Way**
 - A clear, smooth path with no obstacles marked with light-coloured stones, easier to follow
 - Different paths to separated men’s and women’s toilets increase privacy and safety
 - Lantern attached to post or building, powered through battery charged by solar panel or electricity grid

If public lighting is limited, it will attract more than just insects at night. Children doing homework or men meeting to chat and drink may gather beneath it. If the only light is near a toilet, users are very visible, and this may discourage their use. Too much lighting may make going to the toilet obvious to those who would prefer the cover of darkness. Consultation with a variety of users and ongoing monitoring is the only way to fully understand what is working and what needs further adaptation.

Reference: [Oxfam Technical brief – Lighting for Sanitation facilities](http://example.com)
Reduced Mobility

No more than 15 m from household (with member with reduced mobility)

Suitable for: everyone, especially users with a visual impairment and with physical impairments, including wheelchair users.

- Guide string from house to latrine and bath shelter
- Clear, level path, lined with rocks
- Landmark posts made from local materials

Entrances must be: a) wide enough (wheelchair width + 20cm), and b) level enough (minimal or no difference between outside and inside)

- Wide and level entrance to allow wheelchair access or user with helper. Rammed earth floor.
- Latrine with level concrete entrance, wide enough for a wheelchair user
- Level concrete threshold with raised cement mound to reduce flooding. Mound is rounded for wheelchair access.

Door

Suitable for: users with mobility devices, a helper, or carrying a small child, or people who are overweight.

- Latrine with a curtain for privacy made of light cloth
- Outward-opening tin door on wooden frame. Raised platform edge acts as a door stop
- Outward-opening wooden double doors with a latch on outside to keep closed

Door handles and closing mechanisms

Suitable for: everyone, especially women and girls

- Horizontal handrail the full width of the door on the inside. Internal bolt.
- Carved wooden handle nailed to the inside of the door
- Metal hook and eye on inside of door

Reference: WaterAid – Compendium of accessible WASH technologies
Think about: who will use the toilet, and how much space they will need.

Level 1: Space for users who can stand and enter using support rails, or blind users.

Level 2: Additional space for a carer, to use crutches/sticks or to park a wheelchair but not turn.

Level 3: Space for a wheelchair to enter, shut the door, and turn around inside.

- Traditional round superstructure, cement seat, wooden handrail each side, curtain for privacy
- Entrance corridor, with wall on left in front of latrine and a gap between corridor and toilet
- Spacious toilet cubicle, with drop hole located in the corner to provide maximum usable space

Think about: the balance between hygiene and safety. Floors need to be smooth enough to be washed and swept, but not so smooth that they are slippery when wet.

- Rammed earth floor without marram
- Rammed earth floor made of marram (small stones) and sand; cow dung is smeared over to make it even and smooth
- Cement slab, installed level with earth floor around it

Reference: WaterAid – Compendium of accessible WASH technologies
Handrail and support

Suitable for: People who are unstable or unable to walk, squat or stand unaided

- Bricks protruding from wall for support to a weak or visually impaired person
- Wooden/ bamboo support rails fixed to floor either in front or on either side of toilet (depending on user’s needs)
- Metal bars (e.g. galvanised iron pipe) fixed to side wall/s of latrine

Fixed seat pan

Suitable for: people who have difficulty squatting, including overweight people, pregnant women, older people and disabled people.

- Twin cement-plastered brick sitting blocks
- Brick seat with a cement screed
- Cement bowl made with mould

Reference: WaterAid – Compendium of accessible WASH technologies
Moveable seat

Suitable for: users who have difficulty squatting, including overweight people, heavily pregnant women, older people, disabled people

- Low wooden or bamboo toilet stool with hole in seat, placed over toilet hole, with or without funnel as a splash guard (see lower image)
- Standard varnished wooden chair with hole cut in the seat

Commode seat

Suitable for: people who cannot reach a latrine; small children

- Painted wooden chair with 'potty' inserted in hole in seat. Potty is removed for emptying.
- Metal commode chair with plastic inset toilet pan (bought in local market). Container is placed beneath the seat and emptied into the latrine

Reference: WaterAid – [Compendium of accessible WASH technologies](https://wateraid.org/compendium/)

Oxfam Supply Centre – Code HCWOW
Wheelchair access

Ramps

Slope gradients and level of ease for different users

How gradient (slope) is measured

"Gradient" describes the change in height over a specified distance.

Example 1: Gradient 1 in 8

This slope rises one unit over a distance of eight units. For example, if the distance is 8m, the slope rises 1m. If the distance is 80cm, the slope rises 10cm. If the distance is 4m, the slope rises 0.5m. The gradient (slope) is the same, whether the distance is 8cm, 8 feet, 8m or 80m.

Example 2: Gradient 1 in 15

This slope rises 1 unit over a distance of 15 units. If the distance is 15m, the slope will rise 1m.

How high will the slope rise if the distance is:
A. 30m? B. 10m? (Answers to the right)

Reference: WaterAid – [Compendium of accessible WASH technologies](https://www.wateraid.org/)

Wheelchair access

[Image of ramps and wheelchair]

Only suitable where a helper is always available

Absolutely no steeper than this

1 in 20 is ideal, but it needs a lot of space. 1 in 15 is a reasonable compromise.
Adaptation for easier access

Modalities of implementation

Figure 5.1 Transfer techniques for people moving between a wheelchair and a WC.

- **Frontal Transfer**
 - Using grabrails to pivot between wheelchair and WC

- **Oblique Transfer**
 - Using grabrails and/or WC to pivot and transfer
 - Right hand
 - Left hand

- **Lateral (angled) Transfer**
 - Using grabrails and/or WC to pivot and transfer
 - Right hand
 - Left hand

- **Lateral Transfer**
 - Wheelchair positioned at an angle to WC and wall
 - Wheelchair parallel to walls, Rear wheels touching wall.

Note: All dimensions in millimetres

Key:
- A. Vertical grabrail (⌀) diameter 35mm
- B. Horizontal grabrail (⌀) diameter 35mm
- C. Drop down rail (⌀) diameter 35mm
- D. Flat-topped close-coupled cistern prodding a back rest
- E. Special WC pan
- F. 950 high shelf for colostomy bags
- G. Alarm reset button
- H. Toilet paper dispenser
- I. Alarm pull-cord
- J. Paper towel dispenser
- K. Soap dispenser
- L. Hot-air hand dryer
- M. Shelf for personal use
- N. Sanitary dispenser with controls P.
- O. Horizontal rail to assist door closing
- P. Mirror from 600 - 1600
- Q. Two clothes hooks within range 1050 - 1700
- R. Wash basin

Wheelchair turning space

Reference: NDA - Building for Everyone: A Universal Design Approach
Menstrual Hygiene Management

Women and girls require more privacy for sanitation than men and boys, especially when dealing with menstruation. Maintaining safety and dignity while accessing sanitation facilities remains a widespread challenge in humanitarian contexts.

THREE ESSENTIAL COMPONENTS OF A COMPLETE MHM HUMANITARIAN RESPONSE

MHM is a cross-sectoral issue. In order to deliver an effective response, the various sectors must coordinate to ensure that the three central components are addressed.

1. MHM MATERIALS & SUPPLIES
 - Appropriate menstrual materials (pads, cloths, underwear).
 - Additional supportive materials (e.g. soap, bucket) for storage, washing and drying.
 - Demonstration on how to use MHM materials.

2. MHM SUPPORTIVE FACILITIES
 - Safe and private toilet and bathing facilities with water for changing, washing and drying menstrual materials.
 - Convenient and private disposal options for menstrual waste.
 - Waste management systems in place for menstrual waste.

3. MHM INFORMATION
 - Basic menstrual hygiene promotion and education.
 - Basic menstrual health education (especially for pubescent girls).
 - Address harmful cultural or social norms related to menstruation.

MHM-RELATED NFI CONSIDERATIONS TO SUPPORT THE WASHING AND DRYING OF MATERIALS:

- Provision of MHM-designated buckets or basins with lids (as girls and women will not want to use the same buckets for cooking and other laundry activities). It can also be used for soaking and storage when not in use.
- Additional laundry soap for girls and women to wash menstrual materials
- A clothesline and clips to ensure girls and women can dry materials separately.
- In some contexts, women may want a piece of cloth to privately cover these materials while drying.

A latrine superstructure is a shelter which provides privacy and protection for the user of the latrine. Superstructures can be built from a variety of materials ranging from bricks, blocks and stone to corrugated metal sheets, wattle and daub and, in emergencies, even plastic or sackcloth.

Privacy, protection, health

Together with the defecation hole, it is considered by many users to be the most critical component. It is essential, therefore, that the superstructure meets their requirements. For most users, issues of security, dignity and prestige take precedence over public health consideration.

Size

- **Floor area**: too large and people in public latrines may be tempted to defecate on the floor, particularly if the squat hole has been fouled by previous users.
- **For wheelchair user**: doorway and floor area must be large enough to allow entry and turning.
- **For women and girls**: superstructures with washing facilities help women and girls manage menstruation.
- **Height of the superstructure**: should accommodate a person standing upright and be high enough to prevent the space from feeling oppressive. However, if people are used to stooping on entry to buildings, a low entrance may be acceptable or even preferred.

There is no accepted minimum size for a superstructure floor, but it would normally be greater than 0.8m wide by 1.2m long, provided the access door opens outwards. If the door opens inwards, then the length must be increased by at least 0.5m.

Shape (plan view)

For superstructures not attached to buildings, there are two basic shapes: a simple round or rectangular space with or without a privacy wall, a barrier in front of the entrance door to give privacy to those entering or leaving the toilet and a spiral which may also be round or rectangular.

Spiral design uses more wall materials but keep the inside of the latrine dark (requirement for Ventilated Improved Latrines).

In some cultures, there may be a prohibition on facing in a particular direction when defecating. This must obviously be considered when the latrine is being positioned.

Reference: WEDC – Latrine superstructure
Material

What is the construction style in the area (superstructure and material used)? Avoid better construction standard than local dwelling as it won’t be affordable for other families to copy and build their own latrine outside of subsidised program.

Similarly, the introduction of new materials and methods should normally be avoided in a latrine programme as this diverts attention from the real purpose of the sanitation system. It is better to use local skills and materials which local tradesmen understand how to use and, most importantly, how to maintain.

A roof is not necessary. It protect the user from rain and sun.

Check local custom as in some cultures people are used to defecating in the open and find it objectionable to have to go into a small building.

In the initial consultation, local material availability, people’s preferences & needs regarding roof, shape, size should be identified.
Mud and wattle
Consist of upright poles, with the bark removed, interwoven with small branches, the whole being plastered with mud. Mud and wattle may be improved by nailing bamboo strips to straight upright poles and filling the gaps with small stones before plastering with mud.

Bamboo
Shelters can be made from larger-diameter bamboo poles forming the main frame with smaller bamboos nailed or strapped to them to form the walls. Alternatively palm leaves or bamboo matting can be used to fill in the walls of the bamboo frame.

Sawn timber
Increasingly, sawn timber is becoming an expensive and rare commodity in low-income areas, but if off-cuts are available from a sawmill, these can be used to clad a simple timber-framed structure.

Sun-dried bricks
Known as adobe, modagadol, kacha or by other local names, made from a mixture of well-puddled and tempered clay. Moulded in simple wooden formers, and allowed to dry slowly, out of direct sunlight. Can be strengthened with the addition of natural fibres such as fine grasses or coconut fibres. The superstructure is erected slowly using mud mortar, and where necessary the walls can be strengthened with the addition of fencing wire on alternate horizontal joints.

Machine-pressed blocks
This technique employs a portable steel press to compact prepared soils in order to produce regular blocks. The blocks may be stabilized with up to 8% of cement or lime depending upon the character of the soils used and the degree of exposure of the finished wall. The blocks are laid in mud mortar and can be plastered externally with mud mortar which requires attention every couple of wet seasons.

Fired bricks
Where also used for housing, these make an excellent material for latrine construction. To exert minimum pressure on the ground, a half-brick wall (112 mm thick) built in cement mortar is used with pillars at the corners. If mud is used as the mortar to reduce costs, then a one-brick wall (225 mm thick) should be constructed.

Stone
Traditional building techniques with stones are sometimes used for latrine construction. This is normally to be avoided over direct pits as the thickness of the walls (often 450 mm or more) exerts a high load, requiring a strong pit lining for support. Stone buildings are quite acceptable, however, for offset pits.
Concrete blocks
Where a more expensive standard is acceptable, or if firewood for brick firing is restricted concrete blocks can be made by hand on site or purchased from a local manufacturer. The blocks are usually 150 mm thick but to reduce materials 65-mm blocks can be made. However, greater skill is required in the laying of these blocks, and it is unlikely that a householder would be able to build without skilled assistance.

Ferrocement
A strong cement mortar pressed into three or four layers of wire mesh forms a strong, reasonably stiff membrane known as ferrocement. This material has been used successfully for spiral superstructures but can only be used where cement costs are low, and the people are willing to accept a new technology along with their new latrines.

Other wall materials
Plasticized materials, corrugated asbestos cement, galvanized iron and aluminium sheets are also used.

Important
Care must be taken to ensure the walls of a superstructure made of brick or blocks are not too heavy if the superstructure is built directly above a pit. Heavy walls can place undue pressure on the foundations, causing the pit to collapse.

Reference: WHO - A guide to the development of on-site sanitation / R Franceys, J Pickford & R Reed and : WEDC – Latrine superstructure

Doors
Where possible it is advisable to mount the door on self-closing hinges. Doors can be made of sawn timber, from beaten tins or corrugated iron on a wooden frame, bamboo strips or anything else that is available. Simple curtains may suffice where timber is scarce. Where spiral designs is used without door it is normal for people to knock on the outside of the structure before entering to warn anybody using the latrine of their approach. However, check users' preference. Hinges do not have to be manufactured in steel; strips of old car tyres or leather from old shoes can equally well be used.

Roofing
Materials such as thatch, palm leaves, clay tiles, fibre-cement tiles, wood shingles, corrugated iron, corrugated aluminium, asbestos cement, ferrocement and precast concrete can all be used for roofing the latrine superstructure. An important point to note is that the roof must be adequately tied into the wall structure and the walls must be strong enough to resist the uplift of high winds. Some materials, for example, galvanized corrugated iron, lead to greatly increased temperatures inside the latrine which may increase odour and make the building less pleasant to use.

Vent pipe (for VIP, Ventilated Improved Latrine)
Minimum 150mm (smooth surface) or 200-250mm (rough surface) internal diameter pipe with a fine mesh at the top. Pipe made with unplasticized PVC, bricks, blocks, hollowed-out bamboo, ant-hill soil, cement rendered reeds or bamboo, and cement-rendered hessian. Flyscreen made with aluminium, stainless-steel or PVC-coated glass-fibre mesh, size of 1.2-1.5 mm. For the flytrap to be effective, the pipe needs to be directly under sunlight for heating and inside the cubicle should be dark, and the drop hole not covered for air circulation.

For a VIP to be effective all the conditions need to be respected. Any of the following happening rendered the extra cost of building a VIP latrine useless:
• Not dark inside the cubicle
• A cap on the drop hole
• The absence of mesh on top of the pipe
• Wrong pipe diameter (e.g. 4" or smaller)
• Shading of the pipe (e.g. installed inside the cubicle where it can represent a source of cross-contamination by hand contact, or shaded by another building)
Emergency kits for latrine superstructure, suitable for first 3-4 months, camp settings

Latrine superstructure – Code LST

Sheeting, Reinforced Woven Plastic, Tarpaulin pieces – code SPT

Sheeting, Reinforced Woven Plastic, Roll – Code SPE

Latrine kit, raised, with two cubicles – Code LRLT

Example: Use of plastic sheeting as temporary but washable latrine slab.

Example: A superstructure for latrine / washroom using plastic sheeting

Structure
- Timber (0.1M³)
- Nails (3Kg)

Cover
- Plastic sheet (6.5m²)
- Domed head nails (1kg) or nails and battening

Building blocks of latrines can save materials but it can be harder to encourage ownership and keep them clean. Aim for a minimum of one latrine per twenty people.

Reference: IFRC, Oxfam – A guide to the specification and use of plastic sheeting in humanitarian relief
Wind proofing

Foundation

Strong foundation to anchor the structure

Walls

- Brace every wall.
- Brace below the roof.
- Brace between roof trusses.

- No brace or a small brace is weak.
- Tie thick galvanized steel wire or use rebar.
- Nail timber or galvanized steel straps.
- The strongest brace is created by nailing timber and galvanized steel straps.

Reference: Habitat for Humanity - Hurricane resistant wooden houses - safer building and retrofitting guidelines
Modalities of implementation

- Adaptation for easier access
- Slab
- Storage / pre-treatment pit
- Desludging
- Treatment
- Final disposal
- Continuity of service
- Operation & maintenance

Latrine superstructure
- Material
- Wind proofing
- Environment
- Privacy screen
- Signage
- Lock
- Handwashing

Reference: Habitat for Humanity - Hurricane resistant wooden houses - safer building and retrofitting guidelines
Self-closing door to avoid swinging with the wind

Spring or elastic band installed at the top.

However, be ready to replace / repair regularly.

Magnet

When the door is pushed back the magnet ensure the door stay closed

Weight hanging on a rope fixed to the door frame
Environment considerations

Oxfam Ethical and Environmental purchasing policy

Environmental Standards
Oxfam is committed to reduce its reliance on finite/scarc resources and to minimise the environmental impact of its operations including its supply chain and will work to achieve the standards listed in this section.

Climate change:
Monitor and actively seek to reduce the Greenhouse Gas (GHG) emissions associated with its operations and:
- Set absolute GHG reduction targets for operations in industrialised countries or Economies in Transition, such as those identified in Annex I of the United Nations Framework Convention on Climate Change below
- Set and report on targets for improved efficiency in countries where Oxfam runs programmes, such as those that may be regarded as non-Annex I countries under the UNFCCC

Waste:
- Reduce waste to landfill.
- Monitor operations, including procurement, to ensure waste minimisation and high product and process efficiency.
- Effective controls of waste in respect of ground, air, and water pollution are adopted.

Materials:
- Reuse, recycling and the use of recycled and recyclable materials are strongly encouraged.
- Avoid where practicable reliance on materials that are heavily dependent on finite resources.

Packaging:
- Actively avoid undue and unnecessary packaging wherever practicable and use recycled and recyclable materials wherever appropriate.

Wood and forest products:
- Ensure that all forest products purchased are as a minimum legal in origin and provide evidence of due diligence to ensure this if requested by Oxfam.
- Suppliers of paper products sourced from Oxfam affiliate home country offices and retail products carrying the Oxfam Brand must source forest products from recycled sources or well managed forests which have been certified to a credible standard. Exceptions will be made for products which are Fairtrade marked or produced by members of the World Fair Trade Organisation as appropriate. Oxfam views the Forestry Stewardship Council (FSC) as the most credible certification for the sustainable sourcing of wood and forest products.
- Suppliers must never knowingly become involved in, collude with or purchase timber from illegal logging operations.

Conservation of biodiversity:
- Seek to minimise the impact of operations on fauna, flora and land to ensure the conservation of biodiversity and habitats.

Water:
- Develop a better understanding of its impact on water use and develop management processes where appropriate.
Oxfam International has signed the [Climate and Environment Charter](#) developed by ICRC / IFRC, committing to:

1. Step up our response to growing humanitarian needs and help people adapt to the impacts of the climate and environmental crises [View guidance for commitment 1](#)
2. Maximize the environmental sustainability of our work and rapidly reduce our greenhouse gas emissions [View guidance for commitment 2](#)
3. Embrace the leadership of local actors and communities [View guidance for commitment 3](#)
4. Increase our capacity to understand climate and environmental risks and develop evidence-based solutions [View guidance for commitment 4](#)
5. Work collaboratively across the humanitarian sector and beyond to strengthen climate and environmental action [View guidance for commitment 5](#)
6. Use our influence to mobilise urgent and more ambitious climate action and environmental protection [View guidance for commitment 6](#)
7. Develop targets and measure our progress as we implement our commitments

- Include circular economy, environment protection and water security considerations into design
- Integrate Environmental Impact Assessment in the process of developing an excreta disposal system
- Ensure construction with local materials (even if built by the users) doesn’t affect biodiversity and local ecosystems
- Prefer solutions which minimize greenhouse gas emission (e.g., use recycled material, avoid charcoal burnt bricks, reduce methane emission by capturing and reusing as energy source, etc.)
Privacy screen

For cultural and other reasons it can be important especially for women and girls not to be seen entering a toilet. In such situation a privacy screen can be added in front of latrine doors.

Cross bracing at corners

Bracing at least every 5 posts and should connect at 2/3 height of post

Complete enclosed space, combining shower, latrines, handwashing stand, laundry station and drying clothes lines for menstrual hygiene management.

For more on plastic sheeting quality and privacy issues See video [Spotlight on privacy](#)

Reference: IFRC, Oxfam – A guide to the specification and use of plastic sheeting in humanitarian relief
Signage need to consider literacy level and local custom representation for men and women.

While in many countries men are traditionally represented with trousers and women with skirt, don’t assume it applies everywhere...

e.g. In Pakistan both women and men wear trousers under a tunic

e.g. Touareg men

Consult with users the best way to represent women and men latrines.

Various signages found on internet.

Oxfam Supply Centre – Code HMFLS
Lock

An internal lock is an important part of ensuring privacy and safety while using latrine

The most common internal locks used, both bolt and hook type of lock failed when wood door and frame change shape over time and use.

- **Bolt lock**
 - A common type of good quality lock is a bolt lock that bolts straight into the hole. Another type is the lock – into an eyelet.
 - Piece of wood to reinforce the frame on the outside of the door
 - String lock
 - String passed through a hole drilled through the door frame and piece of wood. Knotted on the outside
 - String wrap around the nails several time to tight the door closed

- **Hook lock**
 - Piece of wood to reinforce inside wall of latrine with two nails sticking out

- **Lock**

Video Spotlight on safety

- **Material**
- **Wind proofing**
- **Environment**
- **Privacy screen**
- **Signage**
- **Handwashing**

Excreta disposal system

Consultation

Monitoring

Modalities of implementation

Adaptation for easier access

Latrine superstructure

Slab

Storage / pre-treatment pit

Desludging

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes
Handwashing is a critical practice that is promoted to protect public health, especially during outbreaks of infectious diseases such as COVID-19. Handwashing stations are used both in emergencies and in other contexts to provide locations for people to wash hands with soap. In refugee camps and internal displacement centres, units for handwashing should be installed both at households and next to latrines and in communal areas, such as in markets, schools, and health centres. The criteria for a good handwashing station include:

Principle Considerations

- Cost
- Maintenance required
- Ability to limit hand contact by users with a tap interface (preferably with no touch or one touch action)
- Accessibility, including for children, elderly and people with disabilities
- Design that promotes usage through aesthetics, behavioural nudges, and ease of use
- Robustness of design that can withstand misuse or vandalism and prevent theft

Additional Considerations

- Ability to drain effectively without creating stagnant greywater
- Availability and ease of assembly
- Packability and ease of transport
- Ability to conserve water

Handwashing stations can either be procured ready-made or they may be assembled locally.

Some of the units presented are completed products that have undergone years of research and development and thorough testing with end users.

Other options present design ideas for handwashing stations that can be constructed locally. These design concepts require further adjustment to ensure they are reliable options for handwashing, especially when installed for communal use. Such handwashing stations should be tested not only for technical performance but for user satisfaction, correct use, and degree to which they are successful in promoting handwashing behaviour.

Reference: [Oxfam – Handwashing stations Technical Briefing Note](#) and the following for further reading: [The Sanitation Learning Hub – Handwashing compendium for Low Resource Settings](#)
Completed Products

1. Oxfam Handwashing Station
2. Oxfam Handy Wash Tap
3. Jengu (by ARUP, BRC, and LSHTM)

Reference: Oxfam – Handwashing stations Technical Briefing Note
Ideas for Local Assembly

4. Twin Foot Pedal Design (by WaterAid Nepal)
5. Single Foot Pedal Design
6. Long Handled Taps

Other Options for Households

7. Happy Tap
8. SpaTap
9. Oxfam Bucket
10. Tippy Tap
11. Soapy Water Bottle

Reference: Oxfam – Handwashing stations Technical Briefing Note
A concrete slab will stay rigid and crack where tension is the highest unless rebars are used or if the slab has a dome shape.

A plastic slab will bounce under the weight of the user, affecting users’ trust and potentially scaring children.

Without lining consolidated soil capacity to withstand the weight may erode with time and water.

How much water is available for flushing? Consult with users to understand how easy or complicate is their access to water. Include an analysis of drought impact.
A latrine slab serves two main purposes, as a support and as a seal. It must support the weight of the person using the latrine and, possibly, the weight of the superstructure. It also seals the pit, except for the squat hole and, where required, the vent pipe hole. This facilitates control of flies and smells and reduces the likelihood of rodents and surface water entering the pit. Where the slab has been made in sections (for ease of placing and emptying) or has a removable cover, the joints should be sealed with a weak mortar such as a lime or mud mortar.

Cleanliness. The slab needs to be suitable for cleaning. Rough wood or rough concrete quickly becomes dirty and difficult to clean.

Surface texture. A smooth slab may be easy to clean, but if it is too smooth, then it may be slippery when wet. The inner surface of a pour-flush pan needs to be very smooth, so the faeces can be easily washed away.

Water resistance. Urine, water for anal and menstrual cleansing and water for washing the slab will make the slab wet, so it needs to be able to withstand this and allow excess water to drain away, normally into the vault.

Colour. To see if the slab is clean and to check for spiders, snakes or other creatures, users may prefer particular colours. Cultural and religious affiliations may influence such preferences too.

Reuse. Once the pit is full, the slab may have to be moved, either to gain access to the vault so it can be emptied or moved to a new site.

Durability. If the slab is going to last and not collapse suddenly, it needs to be resistant to rot and termite attack. It should also withstand repeated washing.

Slab slope. Water should be directed toward the hole and away from the sides (in case of UDDT the slope should channel water toward a soakaway pit).

Seal. Gaps between slab and lining / pit walls sealed with soil.

Strength. The slab needs to be strong enough to support the weight of the user, and perhaps someone to assist them. It needs to look strong to give people the confidence to use it.

Reference: WHO - A guide to the development of on-site sanitation / R Franeys, J Pickford & R Reed and WEDC – Latrine slabs: construction material
Material

Unreinforced concrete

SanPlat

Reinforced concrete

<table>
<thead>
<tr>
<th>Slab thickness (mm)</th>
<th>Steel bar diameter (mm)</th>
<th>Spacing of steel bars (mm) for minimum slab span of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 m</td>
</tr>
<tr>
<td>65</td>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>150</td>
</tr>
</tbody>
</table>

Plastic

Squatting plate, plastic, 80x60cm

Latrine Slab, Plastic
Self Supporting – Code LOPN
1.2m long x 0.8m wide x 35mm thick
Wood

Self-supporting slab

Fig. 7.22. Timber and earth slab

Durable timbers such as the heartwood of some tropical hardwoods are normally too expensive for use in latrines but, where available, may be expected to last satisfactorily for several years.

The life of a rough timber slab can be extended by using a mixture of soil and cement to plaster and protect the wood. Alternatively, a thin cement mortar screed can be laid over the surface of the earth to protect against hookworm and to improve hygiene. However, it is usually more cost-effective to use the cement to provide a permanent concrete slab which can be transferred to a new pit when the first is filled. Where more than half a bag of cement is needed to stabilize the earth, a concrete slab is likely to be a cheaper alternative.

In an area where timber is abundant, hewn or sawn logs supporting a platform of wooden planks make a floor that is preferable to the mud and pole version (Fig. 7.23). The surface can be kept clean, and signs of imminent collapse are normally apparent to the adult user. The durability of timbers may be improved by some form of treatment.

A thick layer of earth or mud is often spread over the poles or branches to bind them together and create a smooth surface (Fig. 7.22). In many places, people are skilled at making mud floors which are almost as hard as cement and quite smooth. They need not be rough or unsanitary. There are various methods of improving the mud with local materials, such as mixing the soil with a liquor obtained by soaking animal dung overnight. In some areas the mud is mixed with charcoal or other small aggregate, or with cow dung and then smeared with ashes. Alternatively, the mud from ant-hills has been found to make a hard, practically waterproof surface (Denyer, 1978).

The cost and environment impact of the wood treatment options need to be examined

Reference: WHO - A guide to the development of on-site sanitation / R Franceys, J Pickford & R Reed
Footrests and squat holes

Avoid large and wide hole sizes if small children will use the latrine

Water seals and pans

Can be made in ceramic, concrete, plastic, etc. Its weight need to be considered into the design of the slab

Verify how easy it is to flush the pan (how many litres are required) considering users’ access to water

Reference: WHO - A guide to the development of on-site sanitation / R Franceys, J Pickford & R Reed
When locating sanitation infrastructures pay attention to topography to ensure water runoff path does not cross where latrines are located.

You can get information from local population on drainage pattern during the consultation process.

Shape a drainage channel under the overhanging roof edge to collect and evacuate rain dripping from the roof.

Soil shaped into a bank to divert rain and water runoff from the latrine pit.

Seal with soil the spaces between slab and pit walls.

Seal the side of the latrine walls by covering the extra length of plastic sheeting with soil.
Cleaning

A washable slab (plastic, ceramic, concrete, wood covered with plastic sheeting)

Latrine cleaning kit adapted to context

Designated people for daily cleaning duty

Public toilet

Family and family shared toilet

WASH committee

Users

If payment of latrine attendants is considered it should be restricted to public toilets, with a fee contribution scheme from users for sustainability or with a clear transition plan and communication toward users taking over (e.g. when transitioning to family shared or family latrines)
Sitting

In many parts of the world, people prefer to sit to defecate. To make a latrine seat, a support or pedestal is built or mounted on top of the slab. The seat level should be at a position that is comfortable for the majority of the users (Fig. 7.26); this is normally about 350 mm above the top of the slab.

The seat support can be made on site from brick, concrete, mud block or timber and should be designed to minimize the load on the slab. A heavy type of construction adds weight to the slab which then requires more expensive reinforcement to carry the load. Commercially available or project-manufactured pedestals made of ceramic, glass reinforced plastic (GRP), PVC or ferrocement can also be used where people can afford them.

Reference: WHO - A guide to the development of on-site sanitation / R Franceys, J Pickford & R Reed

Special seats

Reference: GTZ – Technology Review of UDDTs

For sitting, wood can be warmer and smoother than concrete but perhaps more difficult to keep clean. Wooden seats are simpler to make locally. Plastic can be easy to clean but, if flexible, can be disconcerting to use. Concrete blocks are strong but not very comfortable.

Reference WEDC – Latrine slabs: construction material
The need for a pit lining depends upon the type of latrine under construction and the condition of the soil, as well as desludging service.

Figure 4. Stress concentrations on rectangular and circular pits

Figure 5. Typical pit latrine shapes

Circular shapes are stronger than rectangular!

Reference: WEDC – Latrine pit design booklet
Soil considerations

Ground conditions
Ground conditions affect the selection and design of sanitation systems, and the following five factors should be taken into consideration:

Bearing capacity of the soil
All structures require foundations, and some soils are suitable only for lightweight materials because of their poor load-carrying capacity - marshy and peaty soils are obvious examples.

Self-supporting properties of the pits
Many soils may appear to be self-supporting when first excavated, particularly cohesive soils, such as clays and silts, and naturally bonded soils, such as laterites and soft rock. These self-supporting properties may well be lost over time owing to changes in the moisture content or decomposition of the bonding agent through contact with air and/or moisture. It is almost impossible to predict when these changes are likely to occur or even if they will occur at all. It is therefore safer to line the pit. The lining should permit liquid to percolate into the surrounding soil.

Depth of excavation
Loose ground, hard rock or groundwater near to the surface limit the depth of excavation possible using simple hand tools. Large rocks may be broken if a fire is lit around them and then cold water poured on the hot rock. Excavation below the water table and in loose ground is possible by "caissoning", but it is expensive and not usually suitable for use by householders building their own latrines.

Pore clogging
Soil pores eventually become clogged by effluent from pits or drainage trenches. This may reduce or even stop infiltration through the soil. Clogging may be caused by:
- blockage of pores by solids filtered from the liquid;
- growth of microorganisms and their wastes;
- swelling of clay minerals; and
- precipitation of insoluble salts.

Caisson waterproofing must be ensured when the water table is less than 1.5m. In addition Archimedes law may apply if the caisson is reached by water with a thrust force moving the caisson up and damaging it. All in all not a good idea...

Local knowledge can help determine such risks

Reference: WHO - A guide to the development of on-site sanitation / R Franceys, J Pickford & R Reed
Infiltration rate

The soil type affects the rate at which liquid infiltrates from pits and drainage trenches. Clays that expand when wet may become impermeable. Other soils such as silts and fine sands may be permeable to clean water but become blocked when transmitting effluent containing suspended and dissolved solids.

The rate of infiltration also depends on the level of the groundwater table relative to the liquid in the pit or trench. In the unsaturated zone, the flow of liquid is induced by gravity and cohesive and adhesive forces set up in the soil. Seasonal variation may produce a change in the amount of air and water in the soil pores and this will affect the flow rate. Conditions at the end of the wet season should normally be used for design purposes as this is usually the time when the groundwater level is at its highest. In the saturated zone all pores are filled with water and drainage depends on the size of the pores and the difference in level between the liquid in the pit or trench and the surrounding groundwater.

Soil porosity also affects infiltration. Soils with large pores, such as sand and gravel, and rocks such as some sandstones and those containing fissures, drain easily. Silt and clay soils, however, have very small pores and tend to retain water. Soils containing organic materials also tend to retain water, but the roots of plants and trees break up the soil, producing holes through which liquids can drain quickly.

The rate of groundwater flow in unsaturated soils is a complex function of the size, shape and distribution of the pores and fissures, the soil chemistry and the presence of air. The speed of flow is normally less than 0.3 m per day except in fissured rocks and coarse gravels, where the speed may be more than 5.0 m per day, with increased likelihood of groundwater pollution.

Determining infiltration rates

<table>
<thead>
<tr>
<th>Type of soil</th>
<th>Infiltration capacity, settled sewage (L per m² per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse or medium sand</td>
<td>50</td>
</tr>
<tr>
<td>Fine sand, loamy sand</td>
<td>33</td>
</tr>
<tr>
<td>Sandy loam, loam</td>
<td>25</td>
</tr>
<tr>
<td>Porous silty clay and porous silty clay loam</td>
<td>20</td>
</tr>
<tr>
<td>Compact silty loam, compact silty clay loam and</td>
<td>10</td>
</tr>
<tr>
<td>non-expansive clay</td>
<td></td>
</tr>
<tr>
<td>Expansive clay</td>
<td><10</td>
</tr>
</tbody>
</table>

* Source: US Environmental Protection Agency 1980

In fissured rocks conditions, it’s advised to add sand at the bottom to create a biological filtration layer and reduce pollution (minimum thickness 0.5m)
Pre-treatment

As soon as excreta are deposited, they start to decompose, eventually becoming a stable material with no unpleasant smell and containing valuable plant nutrients. During decomposition the following processes take place.

- Complex organic compounds, such as proteins and urea, are broken down into simpler and more stable forms.
- Gases such as ammonia, methane, carbon dioxide and nitrogen are produced and released into the atmosphere.
- Soluble material is produced which may leach into the underlying or surrounding soil or be washed away by flushing water or groundwater.
- Pathogens are destroyed because they are unable to survive in the environment of the decomposing material.

The decomposition is mainly carried out by bacteria although fungi and other organisms may assist. The bacterial activity may be either aerobic, i.e., taking place in the presence of air or free oxygen (for example, following defecation and urination on to the ground), or anaerobic, i.e., in an environment containing no air or free oxygen (for example, in a septic tank or at the bottom of a pit). In some situations, both aerobic and anaerobic conditions may apply in turn. When all available oxygen has been used by aerobic bacteria, facultative bacteria capable of either aerobic or anaerobic activity take over, and finally anaerobic organisms commence activity.

Pathogens may be destroyed because the temperature and moisture content of the decomposing material create hostile conditions. For example, during composting of a mixture of faeces and vegetable waste under fully aerobic conditions, the temperature may rise to 70°C, which is too hot for the survival of intestinal organisms. Pathogens may also be attacked by predatory bacteria and protozoa, or may lose a contest for limited nutrients.
Where possible and if the numbers are below 20,000 on site treatment, septic tanks, biogas or Anaerobic Baffled Reactor (ABR) with leachfields, Urine Diversion Dehydration Toilet (UDDT), or Tiger Worm toilets should be used to decrease desludging, transportation and disposal costs. However, all of these technologies need desludging at some point and that needs to be factored into the design and service provision. Compared the estimated desludging times for Communal pit latrine (trench 3x4x1m) which is **3 months** with on-site treatment in emergency contexts.

Anaerobic Treatment

- **Septic Tanks** – desludged every **2 years**
- **ABR** – desludged every **6 years**
- **Biogas** – Desludged every **6 years**
- **Tiger Worm Toilets** – desludged every **5 years**
- **Double vault UDDT** – desludged every **1 year**

This is a design parameter. Any duration increase before desludging and the risk to clog the percolation filter with sludge increase as well as cost for repair and maintenance.

Reference “*Compendium of sanitation technologies in Emergencies*”
Septic tank, Biogas digester, ABRs and UDDT must be connected to infiltration system to dispose of effluent

Soakaway pit (e.g. in association with UDDT for managing cleaning water) for small effluent volume

Leach field (e.g. in association septic tank) for larger effluent volume.

Simplified sewerage to connect several latrines to one pre-treatment unit such as septic tank, ABR or biogas digester:
- Pipe diameter 100 to 200 mm
- Minimum slope 1% for self-cleansing and water consumption at least 50l/p/d (or minimum 0.5% slope with a minimum water consumption of 60 l/p/d)
- Inspection box at each household with grease trap if kitchen grey water is collected
- Simple inspection chamber diameter 400 to 600 mm (at junction, direction change, slope change, every 50 m for inspection and cleaning / unblocking pipe)
- Depth minimum 30 cm (no pressure from vehicle traffic) or 60 cm under vehicle access road
- Outline as straight and short as possible

Attention need to be paid to pipe and inspection chambers’ foundation to avoid movement and future counter slopes. A trained O&M team should be in place to deal with blockage and maintenance.

Successful operation requires clearly defined responsibilities between service provider and users

During the consultation process, be attentive to potential co-benefit, such as urban forestry development, aquifer recharge.

Reference: GRET – Memento de l’assainissement and “Compendium of sanitation technologies in Emergencies”
Lining is needed when the soil is unstable or if it will become unstable due to water seeping up / in during rainy season or when desludging is required as the mechanical vacuum process will cause the wall to collapse.

Figure 2. Details of the construction of a shallow pit with lining.

Foundations

Nearly all linings need a foundation to prevent the lining sinking into the ground below. In firm soils a simple pad foundation about three times the width of the linings is sufficient (see Figure 7a). The foundation is usually made of the same material as the lining.

In soft ground a thicker foundation may be needed. Cover the base with a 10 to 15cm layer of compacted mixed stone and construct the foundation on that (see Figure 7b).

When only partially lining the pit, leave a step in the pit wall on which to build the foundation (see Figure 7c).

Reference: [WEDC – Latrine pit excavation and linings](#)
Sand bags are cut and stitched in oblong shape.

Be careful, over time the top sand bags will tear from the weight and pressure exercised by the slab.
Plastic lining

Bamboo cage lining. Overtime the bamboo will deteriorate but should last 1 to 2 years (check local knowledge)
Grey water

Grey water (because of its colour and also called sullage) consists of the liquid wastes from domestic activities such as bathing, laundry, food preparation etc. but EXCLUDING excreta related liquids, sometimes known as black water.

The most common sources in emergency settings are:

- Water taps;
- Kitchens/feeding centres;
- Laundries;
- Bathing areas; and
- Health care centres.

1. Typical grey water volumes from public institutions (Based on [2])

<table>
<thead>
<tr>
<th>Institution</th>
<th>Sullage volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field hospital</td>
<td>40 - 60 litres/patient/day</td>
</tr>
<tr>
<td>Hospital with operating theatres</td>
<td>100 litres/intervention</td>
</tr>
<tr>
<td>Out-patient clinics</td>
<td>5 litres/patient/day</td>
</tr>
<tr>
<td>Cholera treatment centre</td>
<td>50 litres/patient/day</td>
</tr>
<tr>
<td></td>
<td>10 litres/carer per day</td>
</tr>
<tr>
<td>Viral haemorrhagic fever centre</td>
<td>300 – 400 litres/patient/day</td>
</tr>
<tr>
<td>Feeding Centre</td>
<td>25 litres/person/day</td>
</tr>
<tr>
<td></td>
<td>10 litres/carer/day</td>
</tr>
<tr>
<td>Public bathing area – piped water provided</td>
<td>100 litres/user*</td>
</tr>
<tr>
<td></td>
<td>20 litres/user</td>
</tr>
<tr>
<td>Public laundry area – piped water provided</td>
<td>100 litres/user*</td>
</tr>
<tr>
<td></td>
<td>20 litres</td>
</tr>
<tr>
<td>Public water points</td>
<td>5 – 20 litres/user*</td>
</tr>
</tbody>
</table>

Note: *These numbers vary widely dependent on the quality of the control mechanism on the pipe outlet and the management of the facility.

Grey water disposal technology options:

- Infiltration
- Evapotranspiration (ponds or beds)
- Irrigation
- Surface water diffusion
- Reuse

Risks for latrine created by grey water

- Filling of latrine pits
- Pit wall erosion and potential collapse
- Obstruction of access paths and walkways;

Other risks created by grey water

- Breeding sites for water related insect vectors
- Soil erosion around temporary shelters
- Filling of solid waste pits
- Pollution of surface and groundwater
- Reduced moral from living in a contaminated environment

Grey water treatment options:

- Gross solids removal
- Grease traps
- Settlement tanks
- Reed beds

Can be treated with black water and excreta, depending on the type of pre-treatment (septic tank) and treatment options (reed bed)

Reference: R. Reed – Engineering in Emergencies – Sullage disposal
Desludging

Modalities of implementation

Adaptation for easier access

Latrine superstructure

Slab

Storage / pre-treatment pit

Lining options

Desludging

Manual

Mechanical

Safe handling

Treatment

Final disposal

Continuity of service

Operation & maintenance

Annexes

Consultation

Excreta disposal system

Assessment

Monitoring

Modalities of implementation

Adaptation for easier access

Is there a desludging hole or should the defecation hole be used?

How bulky is the pumping system, and how near / far from the pit can it be located?

When choosing a desludging system, pay attention to accessibility and manoeuvrability.

Can the system be locally manufactured or need to be imported?

How easy is it to use?

Is the desludging system combined with a tank for safe transport or should you purchase separately a safe transportable container?

How thick is the sludge. Will water be needed to dilute before pumping out?

What are the investment cost and operation & maintenance cost of the desludging system? Is it affordable in the short / medium / long term?
Manual desludging

Diaphragm handpump

Consist of a rigid, disc shaped body clamped to a flexible rubber membrane called a diaphragm. An airtight seal between the diaphragm and the disc forms a cavity. To operate the pump, the diaphragm is alternately pushed and pulled causing it to deform into concave and convex shapes in the same way a rubber plunger is used to unblock a toilet.

Nibbler

Collect medium viscosity sludge using a continuous roller chain loop enclosed in a PVC pipe.

Due to limited success during trials, development of the nibbler was suspended.

Sludge Gulper IV

Low cost, can be build locally

The Gulper 4 is a manual desludging pump for emptying toilet pits and septic tanks. It is an upgraded version of the previous Gulper pump, offering an increased pumping head of approximately 3 m and a delivery head of approximately 3 m. The pump uses flexible piping that allows for a closed system to pump directly to the back of a truck and reduces spillage. The pump has been fabricated with UK-based company BuildWorks and is currently being replicated in with local fabricators in Uganda, Malawi, Rwanda and Honduras. The engineering drawings for this pump are open-source and available from Water For People.

Others

Human-powered vacuum system for the collection and short-distance transport of sludge called the Manual Pit Emptying Technology (MAPET). Due to issues with spare parts and high capital cost this technology was discontinued.

Beaumont manual pump: a basic piston pump designed to intervene in small space, easy to repair, the SP10 - Human Powered Sludge Pump is still under development with the 4th iteration.

Reference: [Feecal sludge management – Systems approach for Implementation and Operation](#)
The gulper IV version has a 3m pumping head, capital cost from 200 USD (local production) - 1,400 USD (UK manufacturer) The PVC riser pipe has been replaced by a flexible pipe not prone to cracking

<table>
<thead>
<tr>
<th>Equipment type</th>
<th>Performance</th>
<th>Purchase/Operating cost (USD)</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulper</td>
<td>Suitable for pumping low viscosity sludges</td>
<td>Capital Cost: 40 – 1,400 (depending on design)/ Operating Cost: Unknown</td>
<td>Difficulty in accessing toilets with a small superstructure
Clogging at high non-biodegradable material content
PVC riser pipe prone to cracking
Splitting of sludge between the spout of the pump and the receiving container</td>
</tr>
<tr>
<td>Manual diaphragm pump</td>
<td>Suitable for pumping low viscosity sludges</td>
<td>300 – 850 (depending on manufacturer and model)
Operating Cost: Unknown</td>
<td>Clogging at high non-biodegradable content
Difficult to seal fittings at the pump inlet resulting in entrainment of air
Pumps and spare parts currently not locally available</td>
</tr>
<tr>
<td>Nibbler</td>
<td>May be suitable for pumping higher viscosity sludges</td>
<td>Capital Cost: Unknown
Operating Cost: Unknown</td>
<td>May be unsuitable for dry sludge with high non-biodegradable material content</td>
</tr>
<tr>
<td>MAPET</td>
<td>Maximum flow rates of between 10 and 40 L/min depending on the viscosity of the sludge and the pumping head</td>
<td>Capital Cost: 3,000 (1992)
Operating Cost: 175 per annum (maintenance costs only) (1992)</td>
<td>Requires strong institutional support for MAPET service providers
A reliance on the importation of a key spare part
MAPET service providers unable to recover maintenance and transport costs from emptying fees</td>
</tr>
</tbody>
</table>

Reference: Feecal sludge management – Systems approach for Implementation and Operation
The performance of a desludging pump will always be limited by two factors that are common in latrines:
1) The fluid being too thick or heavy to flow
2) Debris in the sludge blocking the inlet

Suitable for pumping sludge with high liquid content with solids up to 30mm in diameter

Some of the challenges faced by the motorised PSAs include (Still and O’Riordan, 2012; Still and Foxon, 2012):
• complicated emptying process due to the fixed length and rigidity of the auger and riser pipe;
• unsuitability for use with dry sludge and large amounts of non-biodegradable waste;
• difficulties with cleaning after use; and
• difficulties manoeuvring due to weight and size.

Using the same operating principles as the Nibbler, the Gobbler is powered using an electric motor. The motor turns a double chain drive that rotates a heavier gauge chain that of the Nibbler. However due to significant challenge it was not further developed.

Reference: Faecal sludge management – Systems approach for Implementation and Operation
During the consultation process ensure you understand users' capacity of payment compared to the cost of desludging one pit with the technical choices available.

What volume of sludge can households or group of households afford to desludge? Match latrine pit size to what households can afford.

Reference: Feacal sludge management – Systems approach for Implementation and Operation
Ensuring the service

A desludging service will include the following tasks:

• Interact with customers prior to removing Faecal Sludge (FS) to arrange logistics and inform them of procedures;
• Locate onsite sanitation systems that are to have sludge removed;
• Determine the accessibility of the system once it is located;
• Open the system to facilitate the process;
• Collect the FS;
• Evaluate the condition of the system post-collection;
• Close and secure the system once the FS removal has been completed;
• Clean up after the process is completed; and
• Perform the final inspection and report any issues with the system to the customers after the service is completed.

In a sustainable process where the service is paid by customers to cover costs the following task should be included:

• Share the standardised fee or negotiate one, depending on the business model;

In a camp setting it is recommended to label each latrine with a unique code with a clue to the location (e.g., section, block, street, latrine number)

In an urban setting locating a septic tank may not be obvious and looking for clues such as manhole cover, sewer cleanout, depression in a yard, or using a probe may be required

The following questions can be used as a checklist to assist the service provider in determining if the system is accessible for emptying:

• Can the system be opened to accommodate the sludge removal equipment (e.g., hose)?
• Are there existing manholes over each compartment that can be opened?
• Will the installation of new access ports be required? If so, is that a service that the residents have agreed to?
• Will slabs, floors, or septic tank covers have to be rebuilt following emptying?
• Will the pit collapse if emptied?

Reference: Feecal sludge management – Systems approach for Implementation and Operation
Tools of the trade

- Shovels, pry bars and probes to locate tanks and manholes;
- Screwdrivers and other hand tools to open manholes and access port lids;
- Long handle shovels and buckets which may be necessary to remove solids that cannot otherwise be removed;
- Hooks to remove non-biodegradable solids;
- Hoses for FS pumping as well as for adding water to tanks if available; and
- Safety equipment including:
 - Wheel chocks to prevent the vehicle from moving when parked;
 - Personal protective equipment such as hardhat, face protection, eye protection, boots and gloves;
 - Disinfectants, barriers, sorbents and bags for cleaning up and collecting spilled material.

Transport considerations

The aspects that need to be considered for the transportation of FS include:

- The type of vehicle to be used including its road worthiness, maintenance, licenses and permits, and where it is kept when it is not in service;
- The type of sludge removal equipment, including hoses, pumps, augers, and other tools of the trade;
- The spill management equipment to be used including shovels, disinfectants, sorbents, and collection bags;
- The skills of the operator including the training and certifications that might be required to perform the work;
- Procedures that need to be followed including rules of the road and activities at the treatment plant; and
- Other aspects such as the use of transfer stations, worker health and safety, and emerging technologies.

Reference: Feecal sludge management – Systems approach for Implementation and Operation
Transport equipment

Human or animal powered
- Up to 200 litres
 - Stability (to avoid spilling) and capacity to carry the weight should be considered

Motorised
- Up to 1000 litres
 - Up to 1000 litres
- 10 to 55 m³

Transfer station
- Intermediary storage between small size collection system and final treatment plant
- It can be made of portable container or a fixed station offering some pre-treatment capacity such as Settling tank, drying beds, Biogas digestor, Septic tank, ABRs

Reference: Feecal sludge management – Systems approach for Implementation and Operation
The aim of wastewater and Faecal sludge treatment is the reduction of volume by separating solid and liquid, the inactivation of pathogens and the reduction of Carbonate, Nitrogen and Phosphorus returning to water bodies before disposing safely of the final products. BOD (biological oxygen demand) is a proxy indicator of organic matter pollution used to measure potential risks presented by effluents to water bodies and their fauna and flora.

Most treatment options fall into 4 categories: physical, mechanical, chemical and biological treatment, and a full treatment chain generally involved a mix of them.

Wastewater is generally used to refer to the mixture collected in and transported through a sewer system, using flushing water to transport the faeces and urine. In addition to flushing water, wastewater generally also contains greywater, e.g. the water from showers and sinks.

Faecal sludge is the mixture of human urine and faeces, water and solid wastes (such as toilet paper and menstrual hygiene materials) that gets collected in onsite sanitation systems and is not transported through a sewer.

Reference: GWC – FSM TWIG – Terminology Factsheet
Treatment options in emergency setting

While there are a wide variety of solutions for potable water transport, storage and treatment, most existing emergency kits in sanitation focus on latrines and sludge pumps. Developing faecal sludge treatment kit for emergency purpose is in its infancy.

Oxfam is currently testing a flatpack septic tank kit separating liquid and solid and storing up to 6-12 months faecal sludge from about 500 people.

It is composed of a two chambers bladder tank,

Other types of treatment such as anaerobic filter, trickling filter will require a rigid tank. Metal sheet and liners have successfully replaced civil works in water emergency kits and a similar approach can be done for faecal sludge treatment. It is certainly possible to redirect some of the existing potable water tank kit however be attentive on the liner type and its interaction with wastewater whose characteristics are different from potable water.

Previous version of Oxfam T tank liners were made with EPDM which tend to swell in contact with hydrocarbon (organic matter) and change its characteristics. The suitability for wastewater need to be checked with the supplier. The current version has a PVC liner which require specific blend to be used for wastewater. Again, check with the supplier on the suitability of using the kit for wastewater. The degradation of the liner characteristics may take time, sufficiently for an emergency response use but it’s important to understand and integrate the expiration date into planning.

Selecting geotextile (for the role of support and eventually protection layer) and geomembrane (role of barrier) to design a liner system depend on the choice available locally, site characteristics, the function and geometry of the facility, the characteristic of the water to be stored, the condition of use and maintenance (including possible risks such as flood and environmental risks).

Welding, to seal geomembrane sheets, is sensitive to weather (humidity and temperature variation) and need to be carefully planned. Water and gas may accumulate underneath the geomembrane and exert backpressure on it. In this case water and gas drainage networks should be designed and installed under the geomembrane.
Other considerations for building a treatment system

Material-wise:

Adapted pipe for sludge transfer: HDPE, minimum size 110mm Slotted or perforated rigid pipe for percolation field and effluent drainage

Use appropriate valves to minimise clogging

Any filtering process risk clogging and system to backwash with water or a combination water and air to unblock pores and pipes need to be included into the design

Design-wise:

Where drying beds are considered, rain and runoff pathway should be mapped to minimise their impact on the treatment process. A roof on the drying beds may be required.

Flood risks and their impact on the treatment plant should be considered when locating site and designing infrastructure. Overflow management should be planned to minimise groundwater contamination.

Site topography is a key factor for gravity flow design into the treatment process and minimise pumping needs.

On the selection of the treatment option:

Can users’ needs for energy, agriculture, cooking fuel be served by the treatment process?

The environment impact of a treatment system can have two objectives. The primary one is to reduce the pollution risks of water bodies (pathogen contamination and eutrophication). The second one can be to mitigate some human impact on environment such as deforestation, overextraction of aquifer... if the treatment type is carefully selected in consultation with concerned communities

Look beyond faecal sludge and wastewater treatment and consider how end products (treated effluent, biogas / biomass / compost / dry sludge / fuel briquette) can support climate change adaptation and water security. E.g., by supporting urban forests, agroforestry, crop irrigation, biodiversity & land management, water resource management, etc.
The refugees’ camps of Cox’s Bazar in Bangladesh with their lack of space and the long-term Rohingya crisis was the occasion to implement and test various treatment options in an emergency setting.

Key indicators used to compare technologies were:

- Capital and operational costs (CAPEX and OPEX);
- Area requirement and layout;
- Speed of construction and commissioning;
- Expertise required for set up and operate;
- Operation and maintenance issues;
- Process pinch points;
- Quality of liquid and solid effluent (pathogen inactivation);
- Disposal of final products (liquid and solid); and
- Resilience to flooding/natural disaster.

Out of 8 technologies reviewed 2 rated best on several indicators:

1- Upflow filters (decentralised) ★

2- Anaerobic Baffled reactors – ABR (centralised)

Centralised (treating more than 20m³/day of sludge and serving a large area) and decentralised (serving a smaller area and treating 2-5m³/day) system were studied.

Lime came out a good and robust treatment option but only during the immediate emergency phase due to its high OPEX.

Depending on your design parameters, check which technology fit best.

Reference: ARUP / Oxfam / UNHCR - Faecal Sludge Management for disaster Relief: Technology comparison study
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>BEST FOR</th>
<th>BEST TECHNOLOGY</th>
<th>RATIONAL</th>
<th>RISK WITH CHOICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Easy scale up</td>
<td>Upflow Filters</td>
<td>Can be used on multiple scales. Easy to add more (prefabricated tanks) units in parallel</td>
<td>- Effluent quality To Be Confirmed (TBC) (to achieve standards)</td>
</tr>
<tr>
<td></td>
<td>Low complexity</td>
<td>GeoTubes</td>
<td>Simple technology using local materials</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td></td>
<td>Footprint area/space i.e lowest footprint area per m² treated</td>
<td>Aeration (centralised) or ABR</td>
<td>Lowest footprint area per m² treated</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td></td>
<td>Speed of construction and set up</td>
<td>Upflow Filters</td>
<td>Prefabricated tanks at ground level so construction is rapid</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td></td>
<td>Resilience to disaster</td>
<td>Upflow Filters</td>
<td>Prefabricated tanks (not concrete) so earthquake resistant. All main process units are above ground level so good for flooding</td>
<td>- Site specific conditions must be considered with this criteria, resilience to disaster (e.g. if site is in a known flood plain, the designer could consider raising technology above flood level or providing flood protection bunds/walls. In this case, a technology with larger civil works might be more appropriate e.g. lagoons or concrete tank systems.</td>
</tr>
<tr>
<td>(Treatment) Process</td>
<td>Complexity (primary, secondary, tertiary)</td>
<td>Upflow Filters and GeoTubes</td>
<td>Simple process</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td></td>
<td>Robustness/stability of process</td>
<td>Lime</td>
<td>Lime dose can be adjusted to suit influent. Lime treatment provides full treatment to achieve pathogen kill</td>
<td>- High OPEX</td>
</tr>
<tr>
<td></td>
<td>Treatment effectiveness</td>
<td>Aeration or lagoons</td>
<td>Best for public health and environmental effluent standards</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td>O&M</td>
<td>Skills requirements</td>
<td>ABR</td>
<td>Solids removal every 6 to 12 months otherwise limited maintenance needed</td>
<td>- Effluent quality TBC</td>
</tr>
<tr>
<td>Capital expenditure costs (CAPEX S/m² treated)</td>
<td>ABR</td>
<td>Lowest capex per m² treated</td>
<td>- Area needed for solids handling and disposal</td>
<td>- Area needed for liquid infiltration and solids burial</td>
</tr>
<tr>
<td>Operational expenditure (OPEX K/year)</td>
<td>Upflow Filters or Constructed Wetland</td>
<td>Lowest OPEX per m² treated</td>
<td>- Effluent quality</td>
<td>- Area needed for liquid infiltration and solids burial</td>
</tr>
<tr>
<td>The whole life costs (WLC) of each technology</td>
<td>Constructed Wetland ABR or Biogas</td>
<td>Lowest WLC. ABR is a concrete structure so should not need any replacement over 10 years</td>
<td>- Effluent quality</td>
<td>- Area needed for liquid infiltration and solids burial, or additional treatment to achieve standards</td>
</tr>
<tr>
<td>Environmental and social context</td>
<td>Insights on understanding final discharge routes (environmental contamination)</td>
<td>Upflow Filters</td>
<td>Had adequate space for infiltration and solids storage to achieve pathogen inactivation. Process is contained (in closed plastic tanks) so limits vectors</td>
<td>- Effluent quality</td>
</tr>
</tbody>
</table>

Reference: Faecal Sludge Management for disaster Relief: Technology comparison study

(12) Effluent has not (yet) been tested in CTB so there is no evidence to support treatment effectiveness and pathogens removal.
Treatment Modalities of Implementation

- Adaptation for easier access
- Slab
- Storage / pre-treatment pit
- Desludging
- Latrine superstructure
- Slab
- Storage / pre-treatment pit
- Desludging
- Consultation

Treatment Options - Pathogen Inactivation

Treatment Processes
- Robustness/stability
- Treatment effectiveness

Operation and maintenance
- Skills requirements

Cost
- Capital expenditure costs (CAPEX) (per treatment)
- Operational expenditure (OPEX) (per treatment)

The whole life costs (WLC) of each technology

Environmental and social context
- Final discharge routes (environmental contamination)

Table 1: Comparison of Key Indicators

<table>
<thead>
<tr>
<th>Technology</th>
<th>Scale</th>
<th>Complexity of technology & equipment</th>
<th>Layout and footprint area</th>
<th>Speed of construction & set up</th>
<th>Resistance to disturbance</th>
<th>Complexity of process (primary, secondary, tertiary)</th>
<th>Robustness/ stability</th>
<th>Treatment effectiveness</th>
<th>Operation and maintenance</th>
<th>Cost</th>
<th>The whole life costs (WLC) of each technology</th>
<th>Environmental and social context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Reference: Faecal Sludge Management for Disaster Relief: Technology Comparison Study
Upflow filters

Variation in layout, by replacing 2 filters with settlement tanks

Reference: Faecal Sludge Management for disaster Relief: Technology comparison study
Treatment Modalities of implementation

Adaptation for easier access

- Latrine superstructure
- Slab
- Storage / pre-treatment pit
- Desludging

Excreta disposal system

Consultation

Assessment

Monitoring

Modalities of implementation

Trade-off

Latrine desludge

Settler Tank

Baffled Reactor

Grave Filter

Planted Gravel Filter

Polishing Pond

Surface Water

- **CAPEX**
 - $342 per m³ treated

- **OPEX**
 - $0.06 per m³ treated

- **Whole life cost (10 years)**
 - $21,160

- **Capacity**
 - 35 m³ per day

Reference: [Faecal Sludge Management for disaster Relief: Technology comparison study](#)
Lime

CAPEX $975 per m³ treated

OPEX $9 per m³ treated

Whole life cost (10 years) $396,870

Capacity 11 m³ per day

Reference: Faecal Sludge Management for disaster Relief: Technology comparison study
Pathogen inactivation

There is a variety of pathogen types found in wastewater and faecal sludge, each with different survival capacity.

Ebola virus can also be found in urine, faeces and grey water.

SARS-Cov-2 (causing the Covid-19 infection) can also be found in faeces, limited evidence in urine and potentially in grey water.

In fresh water, Ebola virus can survive for 6 days, while still unknown, tests have demonstrated the potential infection route through wastewater.

In salty water, vibrio cholerae can survive for months.

It’s important to check if the treatment process effectively eliminate helminths eggs and cysts.

Guidance from WHO states that the “Ebola virus is likely to inactivate significantly faster in the environment than enteric viruses with known waterborne transmission (e.g., norovirus, hepatitis A virus)”
The most important factor affecting the survival of all helminth eggs is temperature, with rapid death resulting from temperatures below freezing and above 45°C (Feachem et al. 1983).

Treatment processes such as composting and anaerobic digestion raise temperature up to 60 °C.
Table F.4 Factors influencing virus fate in the subsurface

<table>
<thead>
<tr>
<th>Factor</th>
<th>Influence on Survival</th>
<th>Influence on Migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Viruses survive longer at lower temperatures</td>
<td>Unknown</td>
</tr>
<tr>
<td>Microbial activity</td>
<td>Some viruses are inactivated more readily in the presence of certain microorganisms; however, adsorption to the surface of bacteria can be protective.</td>
<td>Unknown</td>
</tr>
<tr>
<td>Moisture content</td>
<td>Some viruses persist longer in moist soils than dry soils</td>
<td>Generally, virus migration increases under saturated flow conditions.</td>
</tr>
<tr>
<td>pH</td>
<td>Most enteric viruses are stable over a pH range of 3 to 9; survival may be prolonged at near neutral values.</td>
<td>Generally, low pH favours adsorption and high pH results in virus desorption from soil particles.</td>
</tr>
<tr>
<td>Salt species and</td>
<td>Some viruses are protected from inactivation by certain cations; the reverse is also true.</td>
<td>Generally, increasing the concentrations of ionic salts and increasing cation valencies enhance virus adsorption.</td>
</tr>
<tr>
<td>concentration</td>
<td>Vitamin association with soil: in many cases, survival is prolonged by adsorption to soil; however, the opposite has been observed.</td>
<td>Virus movement through the soil is slowed or prevented by association with soil.</td>
</tr>
<tr>
<td>Virus aggregation</td>
<td>Enhances survival</td>
<td>Retards movement.</td>
</tr>
<tr>
<td>Soil properties</td>
<td>Effects on survival are probably related to the degree of virus adsorption.</td>
<td>Greater virus migration in coarse textured soil: there is a high degree of virus retention by the clay fraction of soil.</td>
</tr>
<tr>
<td>Virus type</td>
<td>Different virus types vary in their susceptibility to inactivation by physical, chemical and biological factors.</td>
<td>Virus adsorption to soils is probably related to physicochemical differences in virus capsid surfaces.</td>
</tr>
<tr>
<td>Organic matter</td>
<td>Presence of organic matter may protect viruses from inactivation; others have found that it may reversibly retard virus infectivity.</td>
<td>Soluble organic matter competes with viruses for adsorption sites on soil particles.</td>
</tr>
<tr>
<td>Hydraulic conditions</td>
<td>Unknown</td>
<td>Generally, virus migration increases with hydraulic loads and flow rates.</td>
</tr>
</tbody>
</table>

Temperature is the most predictor of virus inactivation.

Heat, high or low pH, sunlight (UV) and common disinfectants (such as chlorine) all facilitate the inactivation of human enteric virus.

Leaked into groundwater, the virus capacity to contaminate people will depend how long until it reaches any water point compared to the virus survival rate.

The various treatment technologies generate different products whose quality and pollution risks will condition which disposal method is the safest for people’s health and the environment.

For more information on standards for sludge and effluent reuse: WHO – WHO Guidelines for the safe use of wastewater, excreta and greywater in agriculture and aquaculture

Reference: A. Nigussie et al. – Vermicomposting as a technology for reducing nitrogen loss and greenhouse gas emission from small-scale composting
Burying

Disposed in a landfill mixed with solid waste
- Time and cost saving: use existing infrastructure and reduce capital cost
- Proper equipped landfills are waterproofed to protect groundwater

Disposed in a dedicated landfill (monofil)
- Can be built near the treatment facility (reduce transport cost)
- Designed to sludge specification
- Construction licence can be included with the treatment plant’s
- In clay soil simple trenches, easy to dig without heavy machinery are sufficient for burying the sludge

- Subject to landfill operator approval
- Can potentially cause instability in landfill cell slope
- Fees to use the landfill need to be included into the OPEX

Time and cost savings
- Use existing infrastructure
- Reduced capital cost

Advantages
- Properly equipped landfills are waterproofed
- Landfills are allowed
- Construction licences are available
- Simple trenches are sufficient

Disadvantages
- Subject to operator approval
- Potential instability in landfill cell slope
- Fees included in OPEX

Reuse
- Built near the treatment facility
- Reduced transport cost
- Designed to sludge specifications
- Construction licence included

Pollution risks
- Subject to operator approval
- Potential instability in landfill cell slope
- Fees included in OPEX

- Construction and operation cost need to be integrated into budget
- Need space
- Preparation period can take time
- If clay is not available, geotextile may be required (longer procurement time)
Reuse

The most widely reuse for faecal sludge & wastewater treatment products are soil conditioner and organic fertilizer

Soil conditioner

Mixed with soil to improve its physical, biological and / or chemical structure in preparation for planting.

The addition of organic matter causes bacteria proliferation and stimulate roots development as well as increase the clay humus complex.

Composts are the best form of soil conditioner – even better if the composting process combines sludge with plant debris

Organic fertilizer

Spread over plants to provide them with nutrients

Table 10.3 Nutrient content of urine and faeces and mass of nutrients required to grow 250 kg of cereals from Drangert (1998)

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Urine¹ (kg)</th>
<th>Faeces² (kg)</th>
<th>Total (kg)</th>
<th>Nutrients needed for 250 kg cereals (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N)</td>
<td>4.0</td>
<td>0.5</td>
<td>4.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>0.9</td>
<td>0.3</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Total amount of N+ P+ K</td>
<td>5.3</td>
<td>1.0</td>
<td>6.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>

¹ 500 L/capita/year; ² 50 L/capita/year

Assume that not all pathogens have been inactivated and avoid contact with any edible part of the plant.

→ Reuse is not appropriate for vegetable gardening such as lettuce!!!

Different plants have different nutrient needs. How useful is the treated sludge as fertilizer will depend on its nutrient ratio for the main element Nitrogen, Phosphorus, Potassium, and other secondary element such as Calcium, Sulphur, etc..

Reference: Feacal sludge management – Systems approach for Implementation and Operation
Fuel briquettes

Buy-in and community engagement is required at the initial stages of developing the briquette manufacturing and marketing.

Potential for income generation

Alternative to firewood collection, reducing both environment impact and risk to women

After a process of carbonization, dry sludge mixed with carbonized biomass, such as saw dust and rice husks, can be moulded in briquettes.

Gardening waste can be used as biomass and fuel for carbonization process.

Sensitisation of communities on latrine proper use to improve faecal sludge quality.

Adapted stoved improve fuel efficiency of the briquette.

A kg of briquettes burns at the equivalent of 3 kg of charcoal.

Potential for income generation

Buy-in and community engagement is required at the initial stages of developing the briquette manufacturing and marketing.

Furnace

Sensitisation of communities on latrine proper use to improve faecal sludge quality.

Adapted stoved improve fuel efficiency of the briquette.

A kg of briquettes burns at the equivalent of 3 kg of charcoal.

After a process of carbonization, dry sludge mixed with carbonized biomass, such as saw dust and rice husks, can be moulded in briquettes.

Gardening waste can be used as biomass and fuel for carbonization process.
Table 10.1 Summary of potential resource recovery options from faecal sludge

<table>
<thead>
<tr>
<th>Produced Product</th>
<th>Treatment or Processing Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil conditioner</td>
<td>Untreated FS, Sludge from drying beds, Compost, Pelletising process, Digestate from anaerobic digestion, Residual from Black Soldier fly</td>
</tr>
<tr>
<td>Reclaimed water</td>
<td>Untreated liquid FS, Treatment plant effluent</td>
</tr>
<tr>
<td>Protein</td>
<td>Black Soldier fly process</td>
</tr>
<tr>
<td>Fodder and plants</td>
<td>Planted drying beds</td>
</tr>
<tr>
<td>Fish and plants</td>
<td>Stabilisation ponds or effluent for aquaculture</td>
</tr>
<tr>
<td>Building materials</td>
<td>Incorporation of dried sludge</td>
</tr>
<tr>
<td>Biofuels</td>
<td>Biogas from anaerobic digestion, Incineration/co-combustion of dried sludge, Pyrolysis of FS, Biodiesel from FS</td>
</tr>
</tbody>
</table>

Other uses:
- **Using deep trench row in tree plantation and only if the risk to groundwater pollution is very low**
- **Irrigation** (ensuring there is no contact with edible part of plants)
- **Aquifer recharge** (provide the soil has time and capacity to remove the residual pollution)

Reference: *Faecal sludge management – Systems approach for Implementation and Operation*
Pollution risks

The principal concern for contamination from faecal sludge deposit, treatment product and effluent are pathogen and nitrate, with the later accumulating overtime with delayed pollution risks for water sources.

Soil profiles, permeabilities of soil layers and groundwater levels must be analysed to evaluate the potential for pollution attenuation and groundwater pollution risks.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Range of likely permeability (m/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td>0.01–0.1</td>
</tr>
<tr>
<td>Fine silty sand</td>
<td>0.1–10</td>
</tr>
<tr>
<td>Weathered basement (not fractured)</td>
<td>0.01–10</td>
</tr>
<tr>
<td>Medium sand</td>
<td>10–100</td>
</tr>
<tr>
<td>Gravel</td>
<td>100–1000</td>
</tr>
<tr>
<td>Fractured rocks</td>
<td>difficult to generalise, velocities of tens or hundreds of m/d possible</td>
</tr>
</tbody>
</table>

Significant risk - less than 25 days travel time

Low risk - between 25 and 50 days travel time

Very low risk - greater than 50 days travel time

The smaller the pores and voids the slower leaching fluid travel through soil layers, increasing the potential for pollution attenuation

Sources of faecal pollution within urban and rural setting from a) sanitation and b) other sources

Unsaturated zone
- First line of natural defence against groundwater pollution
- Where the most effective pollution attenuation occurs
- Biological activity in the upper soil layers can remove, transform, retard microbiological and to a lesser extent chemical contamination

Saturated zone
- Pollution attenuation more limited,
- Distance to water point from contamination entry zone and the speed of groundwater travel will condition the risk to human beings

Pollution attenuation processes within the saturated and unsaturated zones

Die-off of pathogen will depend on their survival time in various environment (from a few days for the cholera vibron up to several months for helminths eggs in fresh water)

Mechanical filtration is more effective for larger organisms such as protozoan cysts and helminths but will also help to attenuate bacteria and is dependent on the pore size of the rock

Where there are human beings there is the need to ensure proper excreta disposal service for as long as the settlement lasts.

While camps are temporary structures to provide immediate protection and assistance to refugees and internally displaced people, people length of stay vary widely from a few months to several decades in protracted crisis.

However, most people affected by a crisis are more likely to be hosted by local population or to move in urban or peri-urban locations often in abandoned buildings and / or flood prone areas.

Each situation faces its own challenges to ensure any excreta disposal system continue to deliver quality service to all affected and hosting population.
Emergency phases

What are the activities to implement and the parameters you need to check and verify in order to ensure an excreta disposal service is in place and operational in all phases of an emergency, whatever the settings?

Preparedness

What are the hazards that can / will affect excreta disposal services?

- e.g., flood can destroy latrines, treatment systems, damage transport trucks, overflow and fill latrines, damage water network and stop latrine flushing system, etc.

What are the hazards that can / will displace people to areas where there is no functional excreta disposal service?

- e.g., severe drought reduces access to water impacting the flushing of latrines and sewerage as well as handwashing, it can also dry out clays and undermine foundation of infrastructure

What are the population groups whose access to excreta disposal services will be the most affected?

Contingency planning exercises usually provide information on hazards, geographical areas and potential affected population size. But it often does not inform on how various population groups are affected differently by disaster.

What are the existing excreta disposal systems and their functional status? Has the markets for material and services been assessed?

Local disaster response plan may inform on location for evacuation centres (often schools) but not the status of its excreta disposal system neither if there is enough infrastructure to serve the number of affected population it can shelter.

What emergency latrine model is appropriate and what material should be pre-stocked or can standby agreement with suppliers / enterprises be made as preparedness planning?

It important to examine both what function and what doesn’t and why. e.g., technical issues may reflect local entrepreneurs’ skills and limitations Operation and maintenance issues may highlight service affordability limitation Misuse and limit use should alert on design problem as well as security concern to access services and in general a lack of users’ consultation and preference inclusion for designing systems and infrastructures.
1st phase / onset emergency

Speed is important but not at the sake of quality and consultation with people.

Build a good enough excreta disposal system for the first few weeks while you defined and build the final system based on a proper technical assessment and consultation, design with local actors.

Where and who are the “invisible” people? What difficulties do they have to access excreta disposal services?

What are the enablers and blockers for sanitation uptake?

Container based latrine / PeePoo bag

Assess and strengthen existing Faecal Sludge collection and transport system.

Tools and material supporting communities to manage open defecation

Deep trench latrine (ratio 1:50)

Set monitoring system

Train and support cleaning and repair teams

Train and implement SaniTweak for adaptation of latrine models

Sanitation stakeholders, construction and services delivery mapping

Gender sensitive excreta disposal services’ risk mapping and analysis

Set up / reactivate and train sanitation committee(s)

Where malnutrition has high prevalence, target families with malnourished children with sanitation package (latrine subsidy & hygiene promotion)

Anthropological / socio-economical study
Building a sound and affordable operation and maintenance system is essential especially if the excreta disposal system will be needed for more than a year

Support upgrade up the sanitation ladder building from existing systems and practices

Operators and monitors’ training need to be planned and implemented

Ensure local authorities, utilities and technical department are involved in all steps of design and construction of excreta disposal services

Identify and support sanitation “champions” who will model and promote appropriate infrastructures and practices

With local authorities, design and build faecal sludge treatment system when not existing

Voucher (material, technical human resource or artisan for full service) to vulnerable households for upgrade or construction of latrine

Distribution tool kits and material (slab) for household latrine construction

Support local artisans to produce slab (tools and equipment, voucher for most vulnerable households)

Construction of public institution latrines (school and health centres)

Analyse capacity building needs of excreta disposal service actors

Support community health workers and local authorities (or sanitation committee) develop and implement a sanitation and handwashing promotion plan

Upgrade manual desludging service (manual pump, protection equipment, training)

Support community health workers and local authorities (or sanitation committee) develop and implement a sanitation and handwashing promotion plan

Voucher for desludging service (vulnerable households, public institution)

“Cash for latrine” conditional grant

Build family shared latrine, lined and desludgeable (ratio 1:20)

Set up or hire local desludging service when existing (with a voucher system)

Support families with consumable and tools for cleaning and small maintenance

Maintain and equip repair team

With local authorities, design and build faecal sludge treatment system when not existing and if the type of latrine built requires it (N/A in case of tiger worm toilet or UDDT)
Recovery / exit phase

Accompany people going back to their place with household level infrastructure, through participatory approaches and subsidies for the most vulnerable

Support local enterprises for appropriate materials and services market

Support local authorities, utilities and / or technical department take over the supervision or O&M of public infrastructures and services

Support local entrepreneur for the construction of public toilet (combined with biogas as transitional storage / decentralised faecal sludge treatment station)

With local authorities and local entrepreneur explore waste to value project (compost, biogas, irrigation) associated with treatment plant

Identification of micro-finance institutions and support for project definition to access loan

Market evaluation for latrine construction material, faecal sludge treatment product

Market evaluation faecal sludge treatment product prospect

Participative and community approach to manage ODF status

With communities explore and design low-cost ecological sanitation options (Arborloo, Fossa Alterna, adapted UDDT)

Transfer of service delivery responsibility is easier if the design and planning of the system was done with local authorities and within an overall sanitation plan

Review excreta disposal service operational cost, identify options for minimising OPEX, collaborate with local utilities... and evaluate feasibility of transferring operation and maintenance management

Communication and discussion with communities on the transfer plan (purpose, responsibilities, consequence, cost, etc.). Adapt plan with feedbacks.

Implement required structural change to reduce OPEX, build capacity of local utility for transfer of management responsibilities

Be careful of labour law and refugees’ status as not all staff can be transferred into utilities’ workforce
Prevention & mitigation

<table>
<thead>
<tr>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify lessons learned from how disasters have impacted excreta disposal systems</td>
</tr>
<tr>
<td>Construction of privately managed public toilet in market, bus station located in cholera hotspots (associated with biogas / Faecal sludge deconcentrated treatment station)</td>
</tr>
<tr>
<td>Advocacy to improve designing, financing for resilient excreta disposal systems</td>
</tr>
<tr>
<td>Community capacity building to identify sanitation service needs and authorities influencing / advocacy</td>
</tr>
<tr>
<td>If there isn’t a local sanitation strategic plan involving all stakeholders, how can the development process be initiated / supported?</td>
</tr>
<tr>
<td>Support sanitation strategic and planning workshop at local and regional levels</td>
</tr>
<tr>
<td>Who are the sanitation champions?</td>
</tr>
<tr>
<td>Partnership with CSO for quality and access equity to sanitation service monitoring</td>
</tr>
<tr>
<td>Strengthen sanitation services in evacuation centres</td>
</tr>
</tbody>
</table>

Whenever there is a contingency planning exercise planned, it’s important to read the various scenario with an excreta disposal service lenses:
- What level of service will be needed, potentially for how long and where?
- What did we do right before, what could we improve in the future?
- How might we integrate lessons learned from previous emergencies in future responses?
- How might we better involve communities and local authorities at all stages of setting up an excreta disposal service in an emergency?
- How can the markets for sanitation material and services be supported during an emergency response?
Budgeting

Funding availability is often higher at a beginning of an emergency and therefore it’s important to plan carefully the various aspect of the excreta disposal system that need / can be funded in the first 6 months and later.

Community engagement

<table>
<thead>
<tr>
<th>Preparedness</th>
<th>0-6 month</th>
<th>6-12 months</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monthly incentives for volunteers (1 woman, 1 man per 1,000 targeted people)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Community group grant (1 group per 5,000 targeted people)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Safe meeting area / Community centre</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Communication / phone credit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Community mobilisation kits</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Capacity building / training</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Equipment and material for community events</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Translation service</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Formative research (anthropological, socio-economical studies)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Assessment

<table>
<thead>
<tr>
<th>Preparedness</th>
<th>0-6 month</th>
<th>6-12 months</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kit (Tablet, software, stationaries)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>People cost (Incentive, per diem, accommodation, etc.)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Latrines</td>
<td>Preparedness</td>
<td>0-6 month</td>
<td>6-12 months</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Emergency latrines</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Rehabilitation / construction Institutional latrines (school / health centre)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Tool kit for communities</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Voucher / subsidies for slab and other latrine material</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Support to local entrepreneur producing slab / latrine walls</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Sanitation market evaluation</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Latrine cleaning kit</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CLTS triggering and monitoring cost</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Fully subsidised, adapted household latrine (e.g. UDDT)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desludging</th>
<th>Preparedness</th>
<th>0-6 month</th>
<th>6-12 months</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desludging kit</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Desludging service cost (people, consumable or rental desludging truck)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Transitional storage and transport (material and service operation cost)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

If renting the service of a desludging truck, both lines are included in the same service.
Treatment / disposal

<table>
<thead>
<tr>
<th>Activity</th>
<th>Preparedness</th>
<th>0-6 month</th>
<th>6-12 months</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation wastewater / Faecal Sludge (FS) treatment plant</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Construction wastewater / FS treatment plant</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Market survey for recycling / use of treatment products</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Piloting innovative treatment technique</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Piloting project creating synergy between FS treatment & farming</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Support micro-business with biodigester / composting treatment products</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Operation and maintenance

<table>
<thead>
<tr>
<th>Activity</th>
<th>Preparedness</th>
<th>0-6 month</th>
<th>6-12 months</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation / replacement of latrines</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Repair team / material cost</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Cleaning team people cost (salaries, incentives, etc.)</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Treatment site cost (salaries / incentives, consumable and tools, etc.)</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Monitoring

- Complain and feedback mechanism
- Tools & equipment (Camera, GPS, protective gear, sticks, etc.)
- Kit (Tablet, software, stationaries)
- People cost (incentive, per diem, accommodation, etc.)

Other budgeting post

- Support to local authorities’ sanitation strategic plan development
- Trainings, conference, other meeting cost
- Per diem, accommodation and transport cost for government/university sanitation specialist collaboration
- Logistic cost (transport and storage of material + vehicle for staff movement)
- Staff salaries (1 assistant officer per 5,000 targeted people if direct implementation, or 10,000 people if construction is done through enterprise + 1 officer for 2-4 assistant + PHE manager)
- Decommissioning sanitation infrastructures (cleaning, disinfecting, dismantling, closing safely)
Some sanitation infrastructure with low capital expenditure (CAPEX) have high operational expenditure (OPEX). For situations where excreta disposal infrastructures are needed long term (>1-2 year) it is important to aim for low OPEX even if the CAPEX is high, especially since higher funding are usually available at the beginning of an emergency and shrink afterward.

Cost covered by Users, Community engagement, staff, logistic and overhead not included.
Cost comparison

Full excreta disposal cycle considered for the cost comparison of systems

- **Emergency unlined pit latrine (public)**
 - **CAPEX**: $44
 - **Yearly OPEX**: $2,800
 - **Decommissioning and closing pit after 2-3 month**
 - **Yearly OPEX**: $96
 - **Build a new latrine to continue the service**
 - **Yearly OPEX**: $234

- **UDDT**: $1,070
 - **TWT**: $570
 - **Household level**
 - **Clean and repair**
 - **Managed by users (labour and consumable)**

- **Tiger worm toilet**
 - $310
 - (family shared in camp setting)
 - **Manual emptying once a year manageable by users**

- **Masonry lined pit latrine**
 - $446
 - (family shared)
 - **Clean and repair**
 - **Managed by users with provision consumable**
 - **Yearly OPEX**: $315

- **Masonry and CGI Raised pit latrine**
 - $220
 - (family shared)
 - **Clean and repair**
 - **Managed by users (labour and consumable)**

- **Cost comparison**
 - Calculation parameters: cost equivalent to **20 people**, faecal sludge accumulation rate 100 litres per person and per year, 1 cubicle shared by 50 people for public latrine, 20 people for family shared latrine and 5 people for household level. Mechanical desludging is optimised (1 trip empties several latrines until full).
 - Procurement cost are **based on Asia prices** and will varies for other regions. E.g., for **Ethiopia**, CAPEX is increased by **80 to 100%** with similar labour cost, while in **South Sudan** construction cost are **multiply by 4.5** and labour cost are **divided by 5**.
 - Amounts are indicative and do not include any costs related to community engagement, hygiene promotion, and organisation staff.
Cost for 20 people over 10-year period according to phasing scenario

<table>
<thead>
<tr>
<th>Scenario #</th>
<th>Description</th>
<th>Total cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - camp setting</td>
<td>Emergency unlined pit latrine and replacement</td>
<td>$ 31,344</td>
<td>Supposed sufficient space to build new latrines. Most likely a lack of buy-in and collaboration from users.</td>
</tr>
<tr>
<td>2 - camp setting</td>
<td>Emergency unlined pit latrine for 6 months then permanent lined pit latrine family shared, sludge transported and disposed in a landfill</td>
<td>$ 4,568</td>
<td>For planning purpose consider 2m3 of sludge per year for 20 people instead of 0.8m3 after treatment. If the water table is high and the pit must be raised, then the volume to evacuate per year is above 7m3. Supposed the existing landfill (if any) is accepting the sludge*</td>
</tr>
<tr>
<td>3 – camp setting</td>
<td>Emergency unlined pit latrine for 6 months then permanent lined pit latrine family shared, sludge transported and disposed in a landfill for 6 month while a treatment system is built Starting year 2 all sludge is treated before transported in landfill</td>
<td>$ 4,992</td>
<td>0.8 m3 per 20 people per year more susceptible to be accepted by landfill (drier and less instability risks). *</td>
</tr>
<tr>
<td>4 – camp setting</td>
<td>Emergency unlined pit latrine for 6 month then Tiger worm toilet family shared</td>
<td>$ 4,852</td>
<td></td>
</tr>
<tr>
<td>5 - host community</td>
<td>Support for the construction of UDDT or Tiger Worm Toilet at household level</td>
<td>$ 570 (TWT) or $ 1070 (UDDT)</td>
<td>If in a camp setting, then a 6 months phase with emergency latrine may be needed (with an additional cost of about $ 1,600)</td>
</tr>
</tbody>
</table>

*A landfill fee per m3 may apply and is not included in the total cost (landfill operation cost average is $ 35 per tonne)
Estimated cost for 1 household (5 people) for building and maintaining a toilet
Cleaning cost not included

<table>
<thead>
<tr>
<th>Options / Types of latrine</th>
<th>Suitability of option</th>
<th>Costs (Asian reference)</th>
<th>Comments on calculation</th>
<th>Treatment associated costs (10 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Pit Latrine – Pour flush – unlined – movable superstructure (wood and bamboo mat)</td>
<td>Area with stable soil and enough space to dig new pit. Best when good infiltration rate</td>
<td>CAPEX: $150 OPEX: $55 + $46 Total 10 year: $306 Total 20 year: $462</td>
<td>Dig a new pit (~1-1.5m3) and move superstructure every 5 years. Change bamboo mats every 10 years</td>
<td>N/A</td>
</tr>
<tr>
<td>Simple Pit Latrine – Pour flush – lined - superstructure (wood and bamboo mat)</td>
<td>Suitable when desludging service is available and affordable</td>
<td>CAPEX: $185 OPEX: $30 + $46 Total 10 year: $291 Total 20 year: $397</td>
<td>Desludged every 5 years. Change bamboo mats every 10 years</td>
<td>$0.5 (ABR), $1.1 (Biogas), $13 (upflow filter)</td>
</tr>
<tr>
<td>Raised Latrine – Brick / CHB masonry</td>
<td>Area with high water table. Need more frequent desludging (at least 5-6 time more). Shower should be separated. Suitable when desludging service is available and affordable</td>
<td>CAPEX: $225 OPEX: $30 Total 10 year: $525 Total 20 year: $825</td>
<td>Desludged once a year</td>
<td>$1.2 (ABR), $2.7 (Biogas), $32 (upflow filter)</td>
</tr>
<tr>
<td>UDDT – double chamber CHB masonry, superstructure CGI sheet</td>
<td>Area difficult to dig, high water table or with high risk of groundwater contamination. Suitable for long term</td>
<td>CAPEX: $268 OPEX: $15 + $110 Total 10 year: $418 Total 20 year: $678</td>
<td>Empty one chamber once a year. Change CGI sheet after 20 years</td>
<td>N/A</td>
</tr>
<tr>
<td>Tiger Worm Toilet – stone and brick masonry, CGI sheet</td>
<td>Above or below ground, detergent should not be used, and shower should be separated</td>
<td>CAPEX: $285 OPEX: $10 + $110 Total 10 year: $385 Total 20 year: $595</td>
<td>Empty vermicompost every 5 years. Change CGI sheet after 20 years</td>
<td>N/A</td>
</tr>
<tr>
<td>Septic Tank</td>
<td>Require space for effluent percolation or connection to sewer</td>
<td>CAPEX: $850 OPEX: $50 Total 10 year: $1,000 Total 20 year: $1,150</td>
<td>Desludged every 3 years (depending on the designed sludge accumulation volume)</td>
<td>$0.4 (ABR), $0.8 (Biogas), $9.5 (upflow filter)</td>
</tr>
</tbody>
</table>
WASH committee

Built from existing structures whenever possible

Incentives or no incentives?
Be consistent to what is casual work, volunteer works without incentive and works with incentives (within the organisation and other organisations). *What the labour law says?*
Committee members’ need also to earn their living and deal with domestic duties
Explore feasibility of community-based solution to compensate committee members’ time

Transparency
The more community members understand the project in terms of finances, committee functioning and selection of committee members, the more chance of success

Ownership
It’s a *community* committee. Terms of reference, members selection, committee structure, constitution, etc., should be devised and agreed with the wider community

Accountability
2-way communication and timely response to community concerns and delivery of commitments within an agreed timescale and accountable to local authorities or village leader

Inclusion
Active involvement of women and other vulnerable groups, and fair representation of different ethnic groups

Participation
Meaningful community input at the program design stage clarify which activities are the responsibility of communities’ members

Capacity building
Training needs should be developed in collaboration with the community to ensure materials are appropriate and to encourage participation
WASH utility / private contractor with a service agreement

The legal definition can vary between countries according to the type of organisation legally accepted for operating, controlling, managing and/or owning a WASH public service and its infrastructures.

There is sometime a minimum population target for an organisation to be defined as “utility”. Below this target, community structures such as Users’ association or WASH committee are in charged of the WASH service.

In which conditions is it preferable to works through WASH utility to set up and manage an excreta disposal system in an emergency setting?*

* There is no clear-cut answer to this question and more testing and research are required to understand success and failure conditions.

How much do communities trust their WASH utility?

What is the WASH utility capacity to operate and maintain the service?

How much it cost to operate and maintain for the WASH utility?

What is the cost recovery scheme?

What is the population willingness to pay for the service?
Fragmented sector and multiplicity of actors

Lack of comprehensive sanitation plan connecting sewer, onsite sanitation, faecal sludge transport and treatment systems

Education focus on construction and less on operation and maintenance skills

Preventative maintenance and capital maintenance rarely integrated in budget and operation plans

Tentation to focus on paying customer and concentrate OPEX on zones with highest cost recovery potential

In refugee camp settings, the legal status of refugee may impact the transfer of staff to a water/sanitation utility

Legal structure and registered

More attractive for staff long term job opportunity

Better connection to local authorities and local market

Staff experience with operation and maintenance issues

Exit plans involving WASH utilities need to be done from the design stage with the participation of local authorities and the utility

Handover to an existing utility requires buy-in both from the utility team (acceptable incurred cost, technicity and technical expertise, infrastructure in good enough condition) and from the users / community (trust that the level of service will be maintained, understanding new roles and responsibility, willingness and ability to pay for the service cost)
Double door pit latrine

This design is from the Philippines 2007/2014 in Evacuation Centers with limited space.
<table>
<thead>
<tr>
<th>IN</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qnty</th>
<th>Cost/Unit</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pit Digging</td>
<td>m³</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coco lumber 1"x2"x8'</td>
<td>pcs</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Coco lumber 2"x2"x10'</td>
<td>pcs</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Coco lumber 2"x3"x8'</td>
<td>pcs</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CWN 2"</td>
<td>kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CWN 3"</td>
<td>kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CWN 4"</td>
<td>kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Barrel Bolt (Ordinary)</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hinges 3"x3"</td>
<td>pair</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Door Handle 5"</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PVC pipe 2" dia. (Sanitary pipe)</td>
<td>pcs</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Latrine Slab w/ P-Trap</td>
<td>set</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tarpaulin 4x6</td>
<td>shi ts</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Labour cost for construction</td>
<td>Man-days</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Skilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Un-skilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cost per Country (Local Currency):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qnty</th>
<th>Cost/Unit</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2"x2"x6' Wood baton</td>
<td>pcs</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Zinc/iron Sheet G26X 1.8cm, 3ML</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CWN 2", 1 1/2"</td>
<td>kg</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>un-skilled labour</td>
<td>Person/day</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BoQ for Diagram/drawing - I- Double Door Communal/Shared Simple Pit Latrines (unlined and non-ventilated)
Deep Trench latrine

A Deep Trench Latrine is a widely used communal latrine option for emergencies. It can be quickly implemented (within 1–2 days) and consists of several cubicles aligned up above a single trench. A trench lining can prevent the latrine from collapsing and provide support to the superstructure.
Internal lining can be done using sand bag or locally available material for Emergency purpose.
<table>
<thead>
<tr>
<th>No.</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qty</th>
<th>Cost/Unit</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excavation/Pit Digging 3m deep</td>
<td>m3</td>
<td>14</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Sand Bags for Internal wall lining</td>
<td>Pcs</td>
<td>156</td>
<td>1</td>
<td>156</td>
</tr>
<tr>
<td>3</td>
<td>Timber Post 3"x2"x8'</td>
<td>pcs</td>
<td>22</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Timber 2"x1"x10'</td>
<td>pcs</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Timber 2"x2"x8' hand washing stand</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Timber Plank 10"x1"x6'</td>
<td>pcs</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Nails 2"</td>
<td>kg</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Nails 3"</td>
<td>kg</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Hand washing plastic barrel/bucket with faucet – 20/30 ltrs</td>
<td>pcs</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Tarpaulin 4x6m (Plastic sheeting)</td>
<td>M2</td>
<td>33</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Oxfam Plastic Slab (1.2x0.8)</td>
<td>Pcs</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Door Hinges</td>
<td>Pcs</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>Door Locks(Internal)</td>
<td>pcs</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Sand Bags to protect the wall/pit from flush/flood water from</td>
<td>Pcs</td>
<td>45</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>Labour cost for construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Skilled</td>
<td>man-days</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Unskilled</td>
<td>man-days</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>Decommissioning of Trench latrine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Hydrated/chlorinated lime</td>
<td>kg</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Unskilled labour</td>
<td>Man days</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td>302</td>
</tr>
</tbody>
</table>
Emergency desludgeable lined pit latrine

Excreta disposal system
Assessment
Consultation
Monitoring
Modalities of implementation
Adaptation for easier access
Latrine superstructure
Slab
Storage / pre-treatment pit
Desludging
Treatment
Final disposal
Continuity of service
Operation & maintenance
Annexes
Raised “trench” latrine
Item descriptions

<table>
<thead>
<tr>
<th>IN</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qnty</th>
<th>Cost/Unit</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sub Structure (+Block Work)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Excavation of pit hole</td>
<td>M3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hollow Concrete Blocks, 40x20x20</td>
<td>pcs</td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cement Portland 50kg</td>
<td>bags</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sand</td>
<td>m3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gravel</td>
<td>m3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10mm RC bar 12m length</td>
<td>pcs</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Binding wire</td>
<td>kg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wooden pole for formwork</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Timber 200x25mm for formwork</td>
<td>m</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CGI sheet 2m length</td>
<td>pcs</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Timber 100x50mm</td>
<td>m</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Timber 50x50mm</td>
<td>m</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Timber 50x25mm</td>
<td>m</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>75mm pvc vent pipe</td>
<td>m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nails (assorted 3" and 4")</td>
<td>kg</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Roofing nails</td>
<td>kg</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hinges</td>
<td>pcs</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Door lock (inner)</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Door lock (outer)</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Labour skilled(Mason Carpenter)</td>
<td>Man days</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Labour unskilled</td>
<td>Man days</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Estimated cost
Emergency sandbag raised latrine

- Vent pipe with fly trap
- Iron or plastic sheet 1.6m x 0.75m
- Plastic sheeting
- Wooden stairs to reach the platform
- Height of sandback wall depending on depth of pit (if constructed...)
- Pitt only if possible. If not, height of sandback wall has to be increased
- Pit, sealed by plastic sheeting and reinforced by Timber

SIDE VIEW

FRONT VIEW
Single pit latrine

- **Latrine superstructure**
- **Storage / pre-treatment pit**
- **Treatment**
- **Continuity of service**
- **Operation & maintenance**
- **Annexes**

Modalities of implementation

Adaptation for easier access

Slab

Desludging

Final disposal

Consultation

Monitoring

Excreta disposal system

Source of picture: Harvey, P. (2007). *Excreta disposal in emergencies.* WASH. Picture adjusted by offsetting the pit and including desludging hole with cover.

Drawings

- **BoQ**
- **Drawing**

Single pit latrine

- **Deep Trench latrine**
- **Emergency desludgeable lined pit latrine**
- **Raised “trench” latrine**
- **Emergency sandbag raised latrine**
- **Double door pit latrine**
- **Raised Single pit latrine**
- **Off-set pour-flush latrine**
- **SaTo Pan Pour Flush Toilet**
- **Containment pour-flush latrine**
- **UDDT double vault**
- **Tiger worm toilet**
<table>
<thead>
<tr>
<th>IN</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qnty</th>
<th>Cost/Unit</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excavation of 3m deep pit (Circular with R=0.6)</td>
<td>M3</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sandbag for Top soil lining (40-50 cm high)</td>
<td>M3</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mason work for top Pit lining (40 cm high)(Optional) (for slab support)</td>
<td>M3</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Plastic Slab (Oxfam type)</td>
<td>Pcs</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Domslab or concrete rectangular slab (Optional) (See details of the slab design and material required @ the last page)</td>
<td>Pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tarpaulin 4x6m (Plastic sheeting) for Walling and Roofing</td>
<td>M2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Corrugated Iron Sheet (GI34) for Walling & Roofing (Optional for instead of Plastic)</td>
<td>pcs</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Heavy wood columns (10cmx3m length)??</td>
<td>pcs</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Wood timber (2.5cmx5cmx4m)??</td>
<td>pcs</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nails 2''</td>
<td>kg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nails 3''</td>
<td>kg</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Roofing Nails</td>
<td>kg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Door Hings</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Door Locks (Tower Bolts)(in &out side)</td>
<td>pcs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Labour Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Skilled Labour</td>
<td>Man/da ys</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Non Skilled labour</td>
<td>Man/da ys</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total cost
Raised single pit latrine

Optional drainage trench and soakaway pit if the unit is to be also used as a bathing cubicle.

NOTES
1. Drainage depth to be determined based on number of users and soil infiltration capacity (see Appendix 20 of Engineering in Emergencies or page 213 of UNHCR WASH Manual).
2. In cold climates, pit depth should be deeper than maximum permafrost level.

Pit volumes optimised to fill in 2/3 years based on a family of 6 persons using decomposable anal cleansing materials (see calculation in UNHCR WASH Manual). The size has been calculated to allow 50cm freeboard.
<table>
<thead>
<tr>
<th>IN</th>
<th>Description</th>
<th>Unit</th>
<th>QTY</th>
<th>Unit cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wooden Posts (4m x 5cm x 5cm)</td>
<td>Pcs</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wooden Planks (4m x 20cm x 2.5cm)</td>
<td>Pc</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nails (10cm Galvanized)</td>
<td>Kg</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Domed Head Nails (4cm Galvanized)</td>
<td>Kg</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Domed Latrine Slab (150cm dia x 5cm)</td>
<td>Pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bricks (8cm x 12cm x 25cm)</td>
<td>Pcs</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Plastic Sheeting</td>
<td>M2</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Metal Bolts and Washers (M10 x 12cm)</td>
<td>Pcs</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Metallic Door Bolt (4cm Galvanized)</td>
<td>Pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Metallic Padlock with 4 Sets of Keys</td>
<td>Pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Metallic Door Hinge (4cm x 8cm x 2mm Galvanized)</td>
<td>Pcd</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Wooden Grab Rails and Door Handles (Minimum 50cm Length)</td>
<td>Pcs</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mirror (80cm x 60cm)</td>
<td>Pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Coarse Sand</td>
<td>M3</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Coarse Gravel (6mm – 10mm)</td>
<td>M3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cement (50kg sacks)</td>
<td>sack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cost
Offset pour-flush latrine

Figure Cross-section of typical water-seal pan

Main page
Excreta disposal system
Assessment
Consultation
Monitoring
Modalities of implementation
Adaptation for easier access
Latrine superstructure
Slab
Storage / pre-treatment pit
Desludging
Treatment
Final disposal
Continuity of service
Operation & maintenance
Annexes

Drawing
Deep Trench latrine
Emergency desludgeable lined pit latrine
Raised "trench" latrine
Emergency sandbag raised latrine
Single pit latrine
Raised Single pit latrine
Offset pour-flush latrine
SaTo Pan Pour Flush Toilet
Containment pour flush latrine
UDDT double vault
Tiger worm toilet
Figure 4. A twin pit, offset pour-flush latrine

Reference: WEDC – Pour-Flush Latrines booklet
SaTo Pan pour-flush toilet

Diagram/Drawing -- SaTo Pan Pour Flush Toilet
(Unlined/Lined/Raised – require adjustment on the BoQ once decided which one to adopt) (Option C)
<table>
<thead>
<tr>
<th>IN</th>
<th>Description</th>
<th>Unit</th>
<th>QTY</th>
<th>Unit cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wooden Posts (4m x 5cm x 5cm)</td>
<td>pcs</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wooden Planks (4m x 20cm x 2.5cm)</td>
<td>pcs</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nails (10cm Galvanized)</td>
<td>kg</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Domed Head Nails (4cm Galvanized)</td>
<td>kg</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Domed Latrine Slab (150cm dia x 5cm)</td>
<td>pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bricks (8cm x 12cm x 25cm)</td>
<td>pcs</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Plastic Sheeting</td>
<td>M2</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Metal Bolts and Washers (M10 x 12cm)</td>
<td>pcs</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Metallic Door Bolt (4cm Galvanized)</td>
<td>pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Metallic Padlock with 4 Sets of Keys</td>
<td>pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Metallic Door Hinge (4cm x 8cm x 2mm Galvanized)</td>
<td>pcs</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Wooden Grab Rails and Door Handles (Minimum 50cm Length)</td>
<td>pcs</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mirror (80cm x 60cm)</td>
<td>pc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Coarse Sand</td>
<td>M3</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Coarse Gravel (6mm – 10mm)</td>
<td>M3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cement (50kg sacks)</td>
<td>sack</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cost
Example for a 2-door unit of contained pour flush latrines in a displacement camp, Philippines 2010.
<table>
<thead>
<tr>
<th>IN</th>
<th>Item descriptions</th>
<th>Unit</th>
<th>Qnty</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timber (100x50x3600)L</td>
<td>pcs</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Timber (50x50x2400)</td>
<td>pcs</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Timber (50x25x2400)</td>
<td>pcs</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Timber Planks (225x20x2400)</td>
<td>pcs</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CGI Sheet (partition) 34G, 6'H</td>
<td>no</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CGI Sheet (door) 32G, 6'H</td>
<td>no</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CGI Sheet (roof), 32G, 8'H</td>
<td>no</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PVC Pipe, 100 mm - T250</td>
<td>ft</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PE Tank 1000L</td>
<td>no</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Squatting slab with bend & pan (Oxfam)</td>
<td>set</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Silicon Gel (gum)</td>
<td>set</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nails 3"</td>
<td>kg</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nails 2"</td>
<td>kg</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nails 1 ½"</td>
<td>kg</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Umbrella Nails 1 ½"</td>
<td>kg</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T-Hinges (150mm)</td>
<td>no</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Door handle (150mm)</td>
<td>no</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Tower Bolt (150mm)</td>
<td>no</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Gate hook (100mm)</td>
<td>no</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Labour:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Skilled labourer</td>
<td>man-day</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Un-skilled labourer</td>
<td>man-day</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total cost
<table>
<thead>
<tr>
<th>IN</th>
<th>Item description</th>
<th>Qty</th>
<th>Unit</th>
<th>Unit cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cement Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sand</td>
<td>0.6</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gravel 0.1</td>
<td>0.25</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hollow Concrete Blocks, 40x20x20</td>
<td>100</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PPR Pipe 50mm</td>
<td>2</td>
<td>metres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PPR Elbow 50mm</td>
<td>2</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vault Doors</td>
<td>2</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Main Slab & Urine Pot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cement</td>
<td>2.5</td>
<td>50kg bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sand</td>
<td>0.5</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gravel 0.25</td>
<td>0.5</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reinforcement bar, Ø6mm</td>
<td>10</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Binding Wire</td>
<td>0.5</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Bonda Iron</td>
<td>2</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Purlin 5 x 7 x 400 cm, for slab form work.</td>
<td>0.1</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Floor Drain</td>
<td>1</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Superstructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Eucalyptus pole Ø10cm</td>
<td>6</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Eucalyptus pole Ø8cm</td>
<td>6</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Purlin 5 x 7 x 400 cm</td>
<td>3</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Timber 150 x 20 x 400cm</td>
<td>1</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Engine Oil</td>
<td>2</td>
<td>litres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Hollow Concrete Blocks, 40x15x20</td>
<td>40</td>
<td>Pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>cement</td>
<td>1</td>
<td>bag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>sand</td>
<td>0.5</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Bamboo with standard length of 4m</td>
<td>120</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>plastic sheet</td>
<td>0.5</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Iron sheet, 2 x 0.9 m, G-35, for roof and Door.</td>
<td>4</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Nails, Roofing</td>
<td>1.8</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Nails 10, cm</td>
<td>2</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Nails, 6cm</td>
<td>2</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Nails, 8cm</td>
<td>1</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Tower Bolt, 15cm</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Door Latch</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Butt Hinge, 15cm</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Pad Lock</td>
<td>1</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Hand Washing stand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Eucalyptus Pools Ø8cm 5 m long (for Truss/wall work)</td>
<td>1</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Hollow Concrete Blocks, 40x40x20</td>
<td>2</td>
<td>pc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAND TOTAL COST FOR updated UDDT design
Tiger worm toilet (TWT)

The superstructure of a TWT can be the same as existing traditional latrines, as long as there is a roof to prevent rain water entering the system. As with all latrines, it is essential that the community are consulted regarding the design, location and sharing arrangements.

Latrine Pan
- Can be direct drop or off-set. If there is no direct seal a cover is needed.

Infiltration
- It is critical that the infiltration rate is sufficient to prevent water building up and flooding the pit.

Drainage Layer
- Small or medium gravel or similar.

Maximum Water Table
- It is critical that the water table does not raise into the drainage layer.

Bedding Layer
- Where the worms live.

Target
- The faeces should land in the middle zone.

Space
- For the faeces and vermicompost to build up.

- The importance of construction quality

Ensuring good construction quality is particularly important for TWTs. This includes ensuring:

1. The system is properly sealed to prevent predators such as rats or centipedes from being able to enter the pit. The pit lid needs to be well sealed. If direct drop, a good fitting latrine pan cover is needed.
2. The pit is properly sealed on the sides to prevent rain and surface water entering the pit.
3. A well-sealed and large enough emptying and monitoring hatch.
4. The correct construction materials are used. The drainage and bedding layer do not contain too many small fine particles which could cause blockages.
5. The inlet pipe is installed correctly for new faeces to land in the center of the pit.

Reference: [Tiger worm toilet manual](#)
Reference: Tiger worm toilet manual
<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hard wood 3" x 3" post 9’ length</td>
<td>4 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3” x 2” hard wood 12’ length</td>
<td>9 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3”x1” hard wood 12’ length</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3” x 0.5” hard wood for beading</td>
<td>9 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6” x 1” plank 12 length</td>
<td>5 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pan cover with 5 ply wood , 2” x 1” frame</td>
<td>1 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1”x 1” wire mesh</td>
<td>0.04 roll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Concrete footing with M.S flat (8” x 1’ x 1.5’)</td>
<td>4 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Concrete ring (3’ dia, 1.5’ height)</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reinforced concrete cover with man hole (3’ dia)</td>
<td>1 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vernish (1 gal)</td>
<td>1 gal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cement</td>
<td>0.76 bags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Boulder</td>
<td>0.125 sud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Aggregate</td>
<td>0.038 sud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sand</td>
<td>0.019 sud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Brush</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>GI plain sheet (5 ft)</td>
<td>30 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>C.G.I roofing sheet</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Roofing nail</td>
<td>0.5 viss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Nail (various size)</td>
<td>1 viss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1/2” dia Bolt and Nut 5” long with washers</td>
<td>8 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Pan</td>
<td>1 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3” dia PVC pipe 4’</td>
<td>1 nos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Tarpaulin sheet 4’ x 4’</td>
<td>0.04 roll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fly screen 4’ x 5’</td>
<td>5 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4” Hinge</td>
<td>3 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4” Handle</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tower bolts</td>
<td>2 pcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Bedding material/coconut coir</td>
<td>5 bags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Labour cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Carpenter</td>
<td>2 man.days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Mason</td>
<td>1 man.days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Worker</td>
<td>4 man.days</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single door household TWT
Sr.No.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Hard wood 3" x 3" post 9' length</td>
<td>6</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3" x 2" hard wood 12' length</td>
<td>15</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3" x 1" hard wood 12' length</td>
<td>3</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 3" x 0.5" hard wood for beading</td>
<td>13</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Pan cover with 5 ply wood , 2" x1" frame</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 8mm rebar</td>
<td>240</td>
<td>Rft</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>7 6 mm rebar</td>
<td>160</td>
<td>Rft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Binding wire</td>
<td>0.5</td>
<td>viss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 vernish (1 gal)</td>
<td>1</td>
<td>gal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cement</td>
<td>22.34</td>
<td>bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 boulder</td>
<td>3.225</td>
<td>sud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Aggregate</td>
<td>0.25</td>
<td>sud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 sand</td>
<td>1</td>
<td>sud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 brush</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 GI plain sheet (5 ft)</td>
<td>55</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 C.G.I roofing sheet</td>
<td>4</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 roofing nail</td>
<td>1</td>
<td>viss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 nail (various size)</td>
<td>1.5</td>
<td>viss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 1/2" dia Bolt and Nut 5" long with washers</td>
<td>12</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 pan</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 3" dia PVC pipe 4'</td>
<td>2</td>
<td>nos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 fly screen 4'</td>
<td>15</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 4" Hinge</td>
<td>6</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 4"handle</td>
<td>4</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 tower bolts</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 padlock</td>
<td>2</td>
<td>pcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Bedding material/coconut coir</td>
<td>25</td>
<td>bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Carpenter</td>
<td>2</td>
<td>man.days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 Mason + steel fixer</td>
<td>5</td>
<td>man.days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 Worker</td>
<td>8</td>
<td>man.days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total